UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٦

₽

Dynamical Systems

COURSE CODE	:	MATH3509
UNIT VALUE	:	0.50
DATE	:	05-MAY-06
TIME	:	14.30
TIME ALLOWED	:	2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. a) State conditions which ensure that a map f is chaotic on a set S. Explain all terms you use.
 - b) Consider the discrete dynamical system on the interval [-1, 1] defined by

$$x_{n+1} = f(x_n)$$

where $f(x) = 4x^3 - 3x$. Calculate the fixed points and critical points of f(x) in [-1, 1]. Calculate the values of f at the critical points, and at x = 1 and x = -1. c) Let $h : \mathbb{S}^1 \to [-1, 1]$ be the map defined by $h(\theta) = \cos(\theta)$ and $g : \mathbb{S}^1 \to \mathbb{S}^1$ be the circle map defined by $g(\theta) = 3\theta$. Show that $h \circ g = f \circ h$. Assuming that g is chaotic on the whole circle, what does this imply about the map f? What would you additionally need to show to complete the proof that f is chaotic on [-1, 1]?

2. Consider a real map f defined on an interval $I \subset \mathbb{R}$.

a) Given a closed interval $A \subset I$, prove that if $f(A) \supset A$, then f must have at least one fixed point in A.

b) Assume that I contains two closed subintervals, A and B, and that $A \cup B$ contains an invariant subset S. Define the "itinerary" of a point in S. Explain what it means for a point to have a periodic itinerary.

c) Assume that A and B satisfy $f(A) \supset A \cup B$ and $f(B) \supset A \cup B$. Describe the implications of this fact and explain briefly how you would prove your statements (a complete proof is not needed).

MATH3509

3. Consider the following ODE system on \mathbb{R}^2 :

$$\dot{x} = f(x, y) = -x + x^2 - 2xy$$

 $\dot{y} = g(x, y) = -2y - 5xy + y^2$

a) Explain what it means for a fixed point of a flow to be asymptotically stable. Prove that the origin is an asymptotically stable fixed point of this system.

b) Show that the function $V(x, y) = \frac{1}{2}(x^2 + y^2)$ is a Liapunov function for the fixed point at 0. Show that \dot{V} is strictly negative away from the origin in a wedge-shaped region of \mathbb{R}^2 . Write down the inequalities which define this wedge-shaped region, and sketch the region.

4. Consider the following ODE system on \mathbb{R}^2 :

$$\begin{aligned} \dot{x} &= f(x,y) = x \\ \dot{y} &= g(x,y) = -y + x^2 \end{aligned}$$

a) Show that the system has a unique fixed point at the origin. Decide by linearisation whether this fixed point is stable or unstable.

b) Define an invariant set for a flow. Show that the equation $h(x, y) = y - x^2/3 = 0$ defines an invariant curve for this system.

c) Consider the change of co-ordinates from (x, y) to (u, v) defined by

$$\left[\begin{array}{c} u\\v\end{array}\right] = \left[\begin{array}{c} x\\y-x^2/3\end{array}\right]$$

Write down the system in the new co-ordinates (u, v). Briefly describe the dynamics of the system in this co-ordinate system.

MATH3509

CONTINUED

 \mathbf{t}^{2}

5. Consider the following ODE on \mathbb{R} :

$$\dot{x} = G(x, \mu)$$

 μ is a parameter which can take any real value.

a) Write down all conditions on the function G which will ensure that the system undergoes a saddle-node bifurcation at some point $(\bar{x}, \bar{\mu})$.

b) Now consider the particular case $G(x, \mu) = x^3 - 2x^2 - \mu x + 2\mu$. Show that G has a fixed root at some $x = \alpha$ for all values of μ . Find the value of α and use this information to factor G.

c) Use your previous results to identify a value of (x, μ) where a saddle-node bifurcation appears to take place. Confirm that it does take place by checking all bifurcation conditions.

MATH3509

END OF PAPER