University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Dynamical Systems

COURSE CODE	$:$ MATH3509
UNIT VALUE	$: 0.50$
DATE	$: 05-$ MAY-06
TIME	$: 14.30$
TIME ALLOWED	$: \mathbf{2 ~ H o u r s ~}$

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. a) State conditions which ensure that a map f is chaotic on a set S. Explain all terms you use.
b) Consider the discrete dynamical system on the interval $[-1,1]$ defined by

$$
x_{n+1}=f\left(x_{n}\right)
$$

where $f(x)=4 x^{3}-3 x$. Calculate the fixed points and critical points of $f(x)$ in $[-1,1]$. Calculate the values of f at the critical points, and at $x=1$ and $x=-1$.
c) Let $h: \mathbb{S}^{1} \rightarrow[-1,1]$ be the map defined by $h(\theta)=\cos (\theta)$ and $g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be the circle map defined by $g(\theta)=3 \theta$. Show that $h \circ g=f \circ h$. Assuming that g is chaotic on the whole circle, what does this imply about the map f ? What would you additionally need to show to complete the proof that f is chaotic on $[-1,1]$?
2. Consider a real map f defined on an interval $I \subset \mathbb{R}$.
a) Given a closed interval $A \subset I$, prove that if $f(A) \supset A$, then f must have at least one fixed point in A.
b) Assume that I contains two closed subintervals, A and B, and that $A \cup B$ contains an invariant subset S. Define the "itinerary" of a point in S. Explain what it means for a point to have a periodic itinerary.
c) Assume that A and B satisfy $f(A) \supset A \cup B$ and $f(B) \supset A \cup B$. Describe the implications of this fact and explain briefly how you would prove your statements (a complete proof is not needed).
3. Consider the following ODE system on \mathbb{R}^{2} :

$$
\begin{aligned}
\dot{x} & =f(x, y)=-x+x^{2}-2 x y \\
\dot{y} & =g(x, y)=-2 y-5 x y+y^{2}
\end{aligned}
$$

a) Explain what it means for a fixed point of a flow to be asymptotically stable. Prove that the origin is an asymptotically stable fixed point of this system.
b) Show that the function $V(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$ is a Liapunov function for the fixed point at 0 . Show that \dot{V} is strictly negative away from the origin in a wedge-shaped region of \mathbb{R}^{2}. Write down the inequalities which define this wedge-shaped region, and sketch the region.
4. Consider the following ODE system on \mathbb{R}^{2} :

$$
\begin{aligned}
\dot{x} & =f(x, y)=x \\
\dot{y} & =g(x, y)=-y+x^{2}
\end{aligned}
$$

a) Show that the system has a unique fixed point at the origin. Decide by linearisation whether this fixed point is stable or unstable.
b) Define an invariant set for a flow. Show that the equation $h(x, y)=y-x^{2} / 3=0$ defines an invariant curve for this system.
c) Consider the change of co-ordinates from (x, y) to (u, v) defined by

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
x \\
y-x^{2} / 3
\end{array}\right]
$$

Write down the system in the new co-ordinates (u, v). Briefly describe the dynamics of the system in this co-ordinate system.
5. Consider the following ODE on \mathbb{R} :

$$
\dot{x}=G(x, \mu)
$$

μ is a parameter which can take any real value.
a) Write down all conditions on the function G which will ensure that the system undergoes a saddle-node bifurcation at some point $(\bar{x}, \bar{\mu})$.
b) Now consider the particular case $G(x, \mu)=x^{3}-2 x^{2}-\mu x+2 \mu$. Show that G has a fixed root at some $x=\alpha$ for all values of μ. Find the value of α and use this information to factor G.
c) Use your previous results to identify a value of (x, μ) where a saddle-node bifurcation appears to take place. Confirm that it does take place by checking all bifurcation conditions.

