UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Eng. M.Sci.

ħ

¢

Mathematics B45: Discrete Mathematics for Computer Scientists

COURSE CODE	:	MATHB045
UNIT VALUE	:	0.50
DATE	:	02-MAY-06
ТІМЕ	:	14.30
TIME ALLOWED	:	2 Hours

ί,

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. (a) Show using a truth table that for any sets X, Y and Z,

$$((X \cup Y) \cap (Y \cup Z)) \cup X = X \cup Y.$$

Hence shade the set $((X \cup Y) \cap (Y \cup Z)) \cup X$ on a Venn diagram.

(b)

Say what is meant for a set X to be *countable*. Show that the set \mathbb{Z} of integers is countable.

2. (a) Define the terms left inverse, right inverse and 2-sided inverse of a function $f: X \to Y$.

Define the terms injective, surjective and bijective.

- (b) Let $f: X \to Y$ be any function. Prove that if h is a left inverse of f and k is a right inverse of f then h = k.
- (c) Give an example of a function $f : \mathbb{N} \to \mathbb{N}$, which is surjective but not injective.

Write down two distinct right inverses of your function f.

B045

3. (a) Consider the following permutations:

$\sigma =$	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	2 3	3 5	4 2	5 4	6 6	7 10	8 7	9 8	$\begin{pmatrix} 10\\9 \end{pmatrix}$,
au =	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	2 3	3 4	4 1	5 6	6 7	7 5	8 10	9 9	$\begin{pmatrix} 10\\8 \end{pmatrix}$.

Calculate $\sigma \tau$, $\tau \sigma$ and σ^{-1} .

Write σ and τ in disjoint cycle notation.

Find the orders of σ and τ .

Calculate σ^{1000} and τ^{38} , writing your answers in functional notation.

- (b) Calculate the signatures $\epsilon(\sigma)$ and $\epsilon(\tau)$.
- 4. (a) Let G be a set and * a binary operation on G. State the conditions for (G, *) to be a group.
 - (b) State Lagrange's Theorem. Use this theorem to prove the following
 - (a) Suppose that G is finite. Then for any element g in G, the order of g divides the order of G.
 - (b) Suppose that G is finite and its order is a prime number. Then G is cyclic.
 - (c) Write down an element x of order 6 in S_5 and write down the cyclic subgroup of S_5 generated by x.
- 5. (a.) (i.) Solve the congruence:

 $3x \equiv 4 \mod 7$.

- (ii.) Show that $3x \equiv 4 \mod 12$ has no solutions.
- (b) Define the Euler function φ and calculate $\varphi(20)$ and $\varphi(25)$.
- (c) Calculate
 - (i). $11^{801} \mod 20$ and $3^{-1} \mod \phi(20)$.
 - (ii). Solve the equation $x^3 \equiv 3 \mod 20$.

1

ŝ

6. (a) Find all real solutions to the following simultaneous equations:

(b) Give an LU decomposition of the following matrix:

$$\begin{pmatrix} 1 & -2 & 5 \\ 0 & 2 & 3 \\ 2 & -4 & 7 \end{pmatrix}.$$

(c) Calculate (i) the determinant, and (ii) the adjoint and the inverse of the following matrix: . .

$$\begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{pmatrix}.$$

- 7. (a) Define the terms eigenvalue and eigenvector of an $n \times n$ matrix.
 - (b) Find the eigenvalues and eigenvectors of the following matrices:

$$\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 4 & 4 \end{pmatrix}.$$

.

(c) Hence find a simple formula for

$$\left(\begin{array}{cc} 2 & 3 \\ 3 & 2 \end{array}\right)^n.$$

END OF PAPER

B045

٥,

,

-- -