University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Eng. M.Sci.

Mathematics B45: Discrete Mathematics for Computer Scientists

COURSE CODE : MATHB045

UNIT VALUE : 0.50

DATE : 02-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Show using a truth table that for any sets X, Y and Z,

$$
((X \cup Y) \cap(Y \cup Z)) \cup X=X \cup Y
$$

Hence shade the set $((X \cup Y) \cap(Y \cup Z)) \cup X$ on a Venn diagram.
(b)

Say what is meant for a set X to be countable.
Show that the set \mathbb{Z} of integers is countable.
2. (a) Define the terms left inverse, right inverse and 2-sided inverse of a function $f: X \rightarrow Y$.
Define the terms injective, surjective and bijective.
(b) Let $f: X \rightarrow Y$ be any function. Prove that if h is a left inverse of f and k is a right inverse of f then $h=k$.
(c) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$, which is surjective but not injective.
Write down two distinct right inverses of your function f.
3. (a) Consider the following permutations:

$$
\begin{aligned}
\sigma & =\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 3 & 5 & 2 & 4 & 6 & 10 & 7 & 8 & 9
\end{array}\right) \\
\tau & =\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 3 & 4 & 1 & 6 & 7 & 5 & 10 & 9 & 8
\end{array}\right)
\end{aligned}
$$

Calculate $\sigma \tau, \tau \sigma$ and σ^{-1}.
Write σ and τ in disjoint cycle notation.
Find the orders of σ and τ.
Calculate σ^{1000} and τ^{38}, writing your answers in functional notation.
(b) Calculate the signatures $\epsilon(\sigma)$ and $\epsilon(\tau)$.
4. (a) Let G be a set and * a binary operation on G. State the conditions for ($G, *$) to be a group.
(b) State Lagrange's Theorem. Use this theorem to prove the following
(a) Suppose that G is finite. Then for any element g in G, the order of g divides the order of G.
(b) Suppose that G is finite and its order is a prime number. Then G is cyclic.
(c) Write down an element x of order 6 in S_{5} and write down the cyclic subgroup of S_{5} generated by x.
5. (a.) (i.) Solve the congruence:

$$
3 x \equiv 4 \bmod 7
$$

(ii.) Show that $3 x \equiv 4 \bmod 12$ has no solutions.
(b) Define the Euler function φ and calculate $\varphi(20)$ and $\varphi(25)$.
(c) Calculate
(i). $11^{801} \bmod 20$ and $3^{-1} \bmod \phi(20)$.
(ii). Solve the equation $x^{3} \equiv 3 \bmod 20$.
6. (a) Find all real solutions to the following simultaneous equations:

$$
\begin{gathered}
w+2 x+2 y+2 z=7 \\
2 w+x+2 y+2 z=7 \\
2 w+2 x+y+2 z=7
\end{gathered}
$$

(b) Give an LU decomposition of the following matrix:

$$
\left(\begin{array}{ccc}
1 & -2 & 5 \\
0 & 2 & 3 \\
2 & -4 & 7
\end{array}\right)
$$

(c) Calculate (i) the determinant, and (ii) the adjoint and the inverse of the following matrix:

$$
\left(\begin{array}{ccc}
2 & 4 & 3 \\
0 & 1 & -1 \\
3 & 5 & 7
\end{array}\right)
$$

7. (a) Define the terms eigenvalue and eigenvector of an $n \times n$ matrix.
(b) Find the eigenvalues and eigenvectors of the following matrices:

$$
\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 4 & 4
\end{array}\right)
$$

(c) Hence find a simple formula for

$$
\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right)^{n}
$$

