University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics B45: Discrete Mathematics for Computer Scientists

COURSE CODE	$:$ MATHB045
UNIT VALUE	$: 0.50$
DATE	$: 09-M A Y-05$
TIME	$: 14.30$
TIME ALLOWED	$: 2$ Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Show using a truth table that for any sets X, Y and Z,

$$
(X \cup Y) \cap(Y \cup Z)=Y \cup(X \cap Z)
$$

Shade the set $(X \cup Y) \cap(Y \cup Z)$ on a Venn diagram.
(b) Explain what it means for a set to be countable.

Show that \mathbb{R} is uncountable.
2. (a) Define the terms injective, surjective and bijective.
(b) Let X and Y be non-empty sets and let $f: X \rightarrow Y$ be an injective function. Prove that f has a left-inverse.
(c) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$, which is surjective but not injective.
Write down a right inverse of your function.
(d) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}3 x+1 & \text { if } x>0 \\ 2-x^{2} & \text { if } x \leq 0\end{cases}
$$

Find a right-inverse of f.
3. (a) Consider the following permutations:

$$
\begin{aligned}
\sigma & =\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 3 & 4 & 5 & 1 & 6 & 8 & 10 & 7 & 9
\end{array}\right), \\
\tau & =\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
5 & 4 & 7 & 1 & 6 & 2 & 10 & 9 & 3 & 8
\end{array}\right) .
\end{aligned}
$$

Calculate $\sigma \tau, \tau \sigma$ and σ^{-1}.
Write σ and τ in disjoint cycle notation.
Find the orders of σ and τ.
Calculate σ^{34} and τ^{2004}, writing your answers in functional notation.
Calculate $\operatorname{sign}(\sigma)$ and $\operatorname{sign}(\tau)$.
Find an element of S_{10} with order 21.
(b) Prove that for any permutations $\sigma, \tau \in S_{n}$,

$$
\operatorname{sign}(\sigma \tau)=\operatorname{sign}(\sigma) \operatorname{sign}(\tau)
$$

4. (a) State the axioms of a group.

State Lagrange's Theorem.
Hence show that for any element g of a finite group G; the order of g is a factor of $|G|$.
(b) List the elements of the dihedral group of D_{10}.

Find the order of each element.
Find all subgroups of $D_{\mathbf{1 0}}$.
5. (a) Solve the congruence:

$$
8 x \equiv 3(143)
$$

(b) Define the Euler totient function φ and calculate $\varphi(143)$.
(c) Hence calculate 8^{319} modulo 143.
(d) Solve the congruence

$$
y^{103} \equiv 2(143)
$$

6. (a) Find all real solutions to the following simultaneous equations:

$$
\begin{aligned}
w+2 x+3 y+4 z & =10 \\
w+x+y+z & =4 \\
2 x+3 y & =5
\end{aligned}
$$

(b) Define the determinant of an $n \times n$ matrix $\left(a_{i, j}\right)$.
(c) Calculate (i) the determinant, and (ii) the inverse of the following matrix:

$$
\left(\begin{array}{lll}
6 & 5 & 3 \\
2 & 2 & 1 \\
2 & 2 & 2
\end{array}\right)
$$

7. (a) Find the eigenvalues and eigenvectors of the following matrices:

$$
\left(\begin{array}{cc}
11 & 18 \\
-6 & -10
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & -1 & -1 \\
-1 & 2 & -1 \\
3 & 1 & 4
\end{array}\right)
$$

(b) Hence or otherwise show that for $n \in \mathbb{N}$,

$$
\left(\begin{array}{cc}
11 & 18 \\
-6 & -10
\end{array}\right)^{n}=(-1)^{n}\left(\begin{array}{cc}
-3 & -6 \\
2 & 4
\end{array}\right)+2^{n}\left(\begin{array}{cc}
4 & 6 \\
-2 & -3
\end{array}\right)
$$

