University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.A. B.Sc. M.Sci.

Mathematics A2: Differential And Integral Calculus

COURSE CODE : MATHA002

UNIT VALUE : $\mathbf{0 . 5 0}$

DATE : 06-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Differentiate the following with respect to x :
(a) $\cos ^{2}(x / 2+4)$,
(b) $\frac{x^{2}+5}{3 x-4}$,
(c) $x^{3} \ln \left(3 x^{4 / 3}+2 x^{1 / 2}\right)$,
(d) $\exp (2 \tan (2 \sqrt{x}))$,
(e) $\sin (\sin (\sin (x)))$.
2. Find the minimal possible surface area of a cylindrical barrel that is open at one end and has a capacity of $1000 \pi \mathrm{~m}^{3}$.
3. In the first hour a culture of E.coli. bacteria grows in number from 2000 to 8000 . Assuming that a simple exponential growth model applies, find a formula for the number of bacteria in the culture at time t hours. What is the number after 3 hours?
4. Draw a graph of the function $y=x^{2}-4 x$ and find the total area which lies between the curve $y=x^{2}-4 x$, the x axis and the lines $x=-2$ and $x=3$.
5. Compute the following integrals:
(a)

$$
\int_{0}^{1} \frac{1}{\sqrt{2-x}} d x
$$

(b)

$$
\int_{1}^{2} x^{3} \ln x d x
$$

(c)

$$
\int_{1}^{3} \frac{x}{x^{2}-3 x-4} d x
$$

(d)

$$
\int_{0}^{\pi / 3} \frac{\tan x}{\cos ^{2} x} d x
$$

6. The distance D travelled by a moving object from time $t=a$ to time $t=b$ is given by

$$
D=\int_{a}^{b} v(t) d t
$$

where $v(t)$ is the velocity at time t.
Use the trapezium rule to estimate the distance travelled by any object between time $t=0$ and $t=6$, given the following values of $v(t)$.

$$
\begin{array}{c|lllllll}
t(\mathrm{secs}) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline v(t)(\text { metres } / \mathrm{sec}) & 3 & 4 & 3 & 5 & 7 & 8 & 10
\end{array}
$$

7. Solve the following initial-value problems:
(a)

$$
\left(1+x^{2}\right) \frac{d y}{d x}+2 x y^{2}=0, . y(0)=2
$$

(b)

$$
y^{\prime \prime}+2 y^{\prime}+y=2 e^{-x}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

