UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

```
B.Sc. M.Sci.
```

Mathematics C358: Cosmology

COURSE CODE : MATHC358

UNIT VALUE : 0.50

DATE : 20-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

Evolution Equations:

$$
\begin{gather*}
\dot{R}^{2}+k=\frac{8 \pi G}{3} \rho R^{2}=\frac{H_{0}^{2}}{\rho_{c 0}} \rho R^{2} . \tag{1}\\
\frac{\mathrm{d}}{\mathrm{~d} R}\left(\rho R^{3}\right)=-3 p R^{2} . \tag{2}\\
H(t) \equiv \frac{\dot{R}(t)}{R(t)} ; \quad \rho_{c} \equiv \frac{3}{8 \pi G} H^{2} ; \quad \Omega(t) \equiv \frac{\rho}{\rho_{c}} . \\
H_{0}=h 100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} .
\end{gather*}
$$

Development angle/horizon coordinate:

$$
\xi(t) \equiv \int_{0}^{t} \frac{d t^{\prime}}{R\left(t^{\prime}\right)}
$$

Robertson-Walker line element:

$$
\begin{gathered}
\mathrm{d} \tau^{2}=\mathrm{d} t^{2}-R^{2}(t)\left[\mathrm{d} \eta^{2}+F^{2}(\eta)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right] . \\
F(\eta)= \begin{cases}\sin \eta & k=+1 \\
\eta & k=0 \\
\sinh \eta & k=-1\end{cases}
\end{gathered}
$$

1. (a) Suppose the universe is filled with a quintessence field of density ρ and pressure p, with an equation of state $p=w \rho$, where $w \neq-1$. Ignore all other contributions to the energy density of the universe. Using the evolution equations, find $\rho(R)$ in terms of w. Also find $\rho(z)$, where z is the redshift of objects at time t.
(b) Assuming that $k=0$, find $R(t)$ in terms of w.
(c) What value of w corresponds to cold matter? What is the corresponding $R(t)$?
(d) What value of w corresponds to isotropic radiation? What is the corresponding $R(t)$?
(e) Find the present age of the universe t_{0} in terms of H_{0} and w. Suppose h is observed to be $h=2 / 3$. What range of values for w are possible if the universe is determined to be at least 15×10^{9} years old?
2. (a) Consider a galaxy of absolute luminosity L emitting light at coordinate r_{1}, redshift z_{1}, and time t_{1} which we observe at time t_{0}. Define the Luminosity distance d_{L}, and show that

$$
d_{L}=R_{0} r_{1}\left(1+z_{1}\right)
$$

(b) Calculate $r_{1} R_{0}$ for a flat matter dominated universe $\left(R(t)=R_{0}\left(3 H_{0} t / 2\right)^{2 / 3}\right)$. Express your answer in terms of z_{1}. Hence find d_{L} in terms of z_{1} and H_{0}.
(c) If $h=2 / 3$, find the approximate luminosity distance of the nearest quasar 3 C 273 at redshift $z_{1} \approx 1 / 6$.
3. (a) Suppose a sound wave at some wavelength λ_{1} starts at $t=0$ with maximum amplitude, and has its first node at decoupling time $t=t_{d}$. Assume that the wave has dispersion relation $\omega=c_{s} \sqrt{k^{2}-k_{J}^{2}}$ with constant c_{s} and k_{J}. Find an expression for λ_{1} in terms of t_{d} and k_{J}.
(b) What is a rotation curve for a galaxy? How is it observed? Why do observed rotation curves suggest that some of the matter in galaxies is 'dark'?
(c) The Planck black-body spectrum is

$$
\rho(\nu) d \nu=\frac{8 \pi h \nu^{3} d \nu}{e^{h \nu / k T}-1} .
$$

Show that in an expanding universe the spectrum remains black-body. What is $T(R)$?
(d) Given the Einstein Field Equation

$$
R^{a b}-\frac{1}{2} g^{a b} R=8 \pi G T^{a b}, \quad R=R_{a}^{a}
$$

show that

$$
R^{a b}=8 \pi G\left(T^{a b}-\frac{1}{2} g^{a b} T\right), \quad T=T_{a}^{a}
$$

What is T for an isotropic gas in a locally inertial frame of density ρ and pressure p ?
4. The volume of a 3 -manifold described by the metric $g_{a b}$ and coordinates x^{1}, x^{2}, x^{3} is given by

$$
\begin{equation*}
\mathcal{V}=\iiint \sqrt{|\operatorname{det} g|} d x^{1} d x^{2} d x^{3} \tag{3}
\end{equation*}
$$

(a) What is the volume of a 3 -sphere S^{3} with radius R ?
(b) Describe how one can measure the radius of a sphere, using only intrinsic measurements on the sphere's surface.
(c) Consider light emitted at coordinate η_{1} from a distant galaxy with cosmological redshift z_{1}. Show that the relation between η_{1} and z_{1} is given by

$$
\eta_{1}=\frac{1}{R_{0} H_{0}} \int_{0}^{z_{1}} \frac{d z}{E(z)}
$$

where

$$
E(z)=\frac{H(z)}{H_{0}} .
$$

(d) What is $R_{0} H_{0}$ for a $k=+1$ universe?
(e) Suppose Ω_{0} is measured to be precisely $\Omega_{0}=1.02$. Given that for observed cosmic parameters

$$
\int_{0}^{\infty} \frac{d z}{E(z)} \approx 3.5
$$

estimate the horizon coordinate $\xi\left(t_{0}\right)$. Using part (a), estimate the fraction of the total volume of the universe which lies inside the horizon.

PLEASE TURN OVER
5. (a) The acceleration parameter Q_{0} is defined by

$$
Q_{0}=\frac{\ddot{R}_{0} R_{0}}{\dot{R}_{0}^{2}}
$$

Suppose the universe is matter-dominated, so that $\Omega_{0}=\Omega_{m 0}$. Express Q_{0} in terms of $\Omega_{m 0}$.
(b) Next suppose both matter and vacuum energy (with omega parameter $\Omega_{\Lambda 0}$) are important. Show that the first evolution equation can be written

$$
\dot{R}^{2}+k=\frac{C}{R}+D R^{2}
$$

What are the constants C and D ? Rewrite this equation in the form

$$
E=T+V
$$

identifying which terms in the equation correspond to (total energy) E, (kinetic energy) T, and (potential energy) V. Sketch $V(R)$ on a graph, assuming that the maximum value of $V(R)$ is less than $-1 / 2$. Give a brief explanation for why the expansion of the universe accelerates at later times.
(c) Suppose that $k=0$ and solve the evolution equation to find $R(t)$ (Hint: consider the variable $S=R^{3}$.)

