UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

> B.Sc. M.Sci.

Mathematics C383: Combinatorial Optimisation

COURSE CODE : MATHC383

UNIT VALUE : 0.50

DATE : 08-MAY-06

TIME : $\mathbf{1 0 . 0 0}$

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. a) Describe the algorithm Heapsort (HS) for sorting n different numbers into increasing order.
b) Prove that HS uses $O(n \log n)$ comparisons to sort n numbers.
c) Use HS to order the following list of numbers:

$$
81,14,31,45,90,85 .
$$

2. a) Define the Fourier transform of a sequence ($a_{0}, a_{1}, \ldots, a_{n-1}$) of complex numbers.
b) Describe the Fast Fourier Transform (FFT) for finding the Fourier transform of ($a_{0}, a_{1}, \ldots, a_{n-1}$), where $n=2^{r}$ is a power of two.
c) Show that FFT uses $O(n \log n)$ multiplications of complex numbers.
d) Use the Inverse Fast Fourier Transform (IFFT) technique to find the polynomial of degree at most 3 which takes the successive values

$$
4-2 i,-8 i, 1+3 i, 5+6 i
$$

at the 4 th roots of unity $1, i,-1,-i$. Explain what you do.
3. a) Define the chromatic polynomial $P(k ; G)$ of a finite graph G.
b) Let e be an edge of G. Define the graphs $G-e$ and G / e. Prove that $P(k ; G)=$ $P(k ; G-e)-P(k ; G / e)$.
c) Deduce that $P(k ; G)$ is indeed a polynomial in k, and that its leading coefficient is k^{n}, where n is the number of vertices of G.
d) Show that if G is a tree on n vertices, then $P(k ; G)=k(k-1)^{n-1}$.
(Use the fact that a tree on at least two vertices has a vertex of degree 1.)
e) Find the chromatic polynomial of a pentagon.
4. a) Describe the Euclidean Algorithm (EA) for finding the greatest common divisor $d=\operatorname{gcd}(a, b)$ of two natural numbers a and b.
(Assume, here and below, that $a>b$.)
b) Show that the number d which EA returns is indeed equal to $\operatorname{gcd}(a, b)$.
c) Prove that if F_{k} is the largest Fibonacci number less than or equal to b, then EA takes at most k steps to produce d.
d) Apply EA to find $\operatorname{gcd}(5214,1518)$, and express it in the form $5214 x+1518 y$, for some integers x and y.
5. a) Describe the concept of a Turing Machine (TM). State carefully how a TM is set up, and how it operates. Explain what is meant by a step in a TM calculation.
b) Set up a TM for the following problem:

Given a finite string of entries 0 and 1 , determine whether or not the number of entries 1 is a multiple of 3 .

Explain why the program works.

