UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ş

¥

Mathematics C383: Combinatorial Optimisation

COURSE CODE	:	MATHC383
UNIT VALUE	:	0.50
DATE	:	08-MAY-06
TIME	:	10.00
TIME ALLOWED	:	2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. a) Describe the algorithm Heapsort (HS) for sorting n different numbers into increasing order.
 - b) Prove that HS uses $O(n \log n)$ comparisons to sort n numbers.
 - c) Use HS to order the following list of numbers:

- 2. a) Define the Fourier transform of a sequence (a₀, a₁,..., a_{n-1}) of complex numbers.
 b) Describe the *Fast Fourier Transform* (*FFT*) for finding the Fourier transform of (a₀, a₁,..., a_{n-1}), where n = 2^r is a power of two.
 - c) Show that FFT uses $O(n \log n)$ multiplications of complex numbers.
 - d) Use the Inverse Fast Fourier Transform (IFFT) technique to find the polynomial
 - of degree at most 3 which takes the successive values

$$4-2i, -8i, 1+3i, 5+6i$$

at the 4th roots of unity 1, i, -1, -i. Explain what you do.

3. a) Define the chromatic polynomial P(k; G) of a finite graph G.

b) Let e be an edge of G. Define the graphs G - e and G/e. Prove that P(k;G) = P(k;G-e) - P(k;G/e).

c) Deduce that P(k; G) is indeed a polynomial in k, and that its leading coefficient is k^n , where n is the number of vertices of G.

d) Show that if G is a tree on n vertices, then $P(k;G) = k(k-1)^{n-1}$.

(Use the fact that a tree on at least two vertices has a vertex of degree 1.)

e) Find the chromatic polynomial of a pentagon.

MATHC383

PLEASE TURN OVER

4. a) Describe the Euclidean Algorithm (EA) for finding the greatest common divisor $d = \gcd(a, b)$ of two natural numbers a and b.

(Assume, here and below, that a > b.)

b) Show that the number d which EA returns is indeed equal to gcd(a, b).

c) Prove that if F_k is the largest Fibonacci number less than or equal to b, then EA takes at most k steps to produce d.

d) Apply EA to find gcd(5214, 1518), and express it in the form 5214x + 1518y, for some integers x and y.

- 5. a) Describe the concept of a *Turing Machine* (TM). State carefully how a TM is set up, and how it operates. Explain what is meant by a *step* in a TM calculation.
 - b) Set up a TM for the following problem:

Given a finite string of entries 0 and 1, determine whether or not the number of entries 1 is a multiple of 3.

Explain why the program works.

MATHC383

END OF PAPER

1

ł,