UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C383: Combinatorial Optimisation

COURSE CODE	: MATHC383
UNIT VALUE	: 0.50
DATE	: 06-MAY-03
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

03-C0928-3-40 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. Let $n = 2^r$ be a power of 2. Define the *Fourier transform* of a sequence $(\xi_0, \ldots, \xi_{n-1})$, and show how it can be calculated in time $O(n \log n)$.

Use the technique of the Inverse Fast Fourier Transform to find the polynomial of degree at most 3 which takes the successive values

$$4-2i, -8i, -4-2i, -8i,$$

at the 4th roots of unity.

2. Let $\beta_1, \ldots, \beta_p \ge 0$ with $\sum_{r=1}^p \beta_r > 1$, and let the sequence $(x_n | n \ge 0)$ satisfy a recurrent inequality of the form

$$x_n \leqslant \sum_{r=1}^p \beta_r x_{n-r} + g(n)$$

for $n \ge p$, where g(n) is a polynomial in n. Prove that there is a number $\gamma > 1$ (which should be carefully described) such that $x_n = O(\gamma^n)$.

The condition that g(n) be a polynomial in n is too strong. Suggest (with proof) a weaker condition which will suffice to give the same estimate for the order of x_n .

- 3. Define the chromatic polynomial P(k;G) of a graph G, and prove that it has the following properties:
 - (a) it is a polynomial in k;
 - (b) it has leading term k^n , where n := |V(G)|;
 - (c) its coefficients alternate in sign;
 - (d) it has no constant term;
 - (e) the coefficient of k^{n-1} is -|E(G)|.

Describe an algorithm for calculating P(k; G), and estimate its efficiency.

MATHC383

PLEASE TURN OVER

4. Let X be a network, and f a flow in X. Describe how to construct the layered network Y := Y(X, f).

Define the *height* of a layered network Y, and show that, if Y(p) and Y(p+1) are two successive layered networks of X, then Y(p+1) has larger height than Y(p).

5. Describe the euclidean algorithm, for finding the greatest common divisor d of two natural numbers a and b, and expressing d in the form

$$d = xa + yb,$$

for some integers x and y. Show that this can be done in time $O(\log_2 m)$, where $m = \max\{a, b\}$.

Illustrate the method with a = 3498 and b = 2442.

MATHC383

END OF PAPER