EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics C383: Combinatorial Optimisation

COURSE CODE : MATHC383

UNIT VALUE : 0.50

DATE : 06-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let $n=2^{r}$ be a power of 2 . Define the Fourier transform of a sequence $\left(\xi_{0}, \ldots, \xi_{n-1}\right)$, and show how it can be calculated in time $O(n \log n)$.
Use the technique of the Inverse Fast Fourier Transform to find the polynomial of degree at most 3 which takes the successive values

$$
4-2 i,-8 i,-4-2 i,-8 i
$$

at the 4 th roots of unity.
2. Let $\beta_{1}, \ldots, \beta_{p} \geqslant 0$ with $\sum_{r=1}^{p} \beta_{r}>1$, and let the sequence ($x_{n} \mid n \geqslant 0$) satisfy a recurrent inequality of the form

$$
x_{n} \leqslant \sum_{r=1}^{p} \beta_{r} x_{n-r}+g(n)
$$

for $n \geqslant p$, where $g(n)$ is a polynomial in n. Prove that there is a number $\gamma>1$ (which should be carefully described) such that $x_{n}=O\left(\gamma^{n}\right)$.
The condition that $g(n)$ be a polynomial in n is too strong. Suggest (with proof) a weaker condition which will suffice to give the same estimate for the order of x_{n}.
3. Define the chromatic polynomial $P(k ; G)$ of a graph G, and prove that it has the following properties:
(a) it is a polynomial in k;
(b) it has leading term k^{n}, where $n:=|V(G)|$;
(c) its coefficients alternate in sign;
(d) it has no constant term;
(e) the coefficient of k^{n-1} is $-|E(G)|$.

Describe an algorithm for calculating $P(k ; G)$, and estimate its efficiency.
4. Let X be a network, and f a flow in X. Describe how to construct the layered network $Y:=Y(X, f)$.
Define the height of a layered network Y, and show that, if $Y(p)$ and $Y(p+1)$ are two successive layered networks of X, then $Y(p+1)$ has larger height than $Y(p)$.
5. Describe the euclidean algorithm, for finding the greatest common divisor d of two natural numbers a and b, and expressing d in the form

$$
d=x a+y b
$$

for some integers x and y. Show that this can be done in time $O\left(\log _{2} m\right)$, where $m=\max \{a, b\}$.
Illustrate the method with $a=3498$ and $b=2442$.

