University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C326: Boundary Layers

COURSE CODE : MATHC326

UNIT VALUE : 0.50

DATE : 12-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

For questions 2 to 5, assume two-dimensional incompressible laminar flow.
The standard dimensional boundary layer equations for a boundary layer in the neighbourhood of $y=0$ are

$$
u_{x}+v_{y}=0 \quad, \quad u_{t}+u u_{x}+v u_{y}=U_{t}+U U_{x}+\nu u_{y y}
$$

Here u and v are velocity components in the x and y directions respectively, t is time, ν is the kinematic viscosity of the fluid, and $U(x, t)$ is the external flow in the x direction at $y=0$. Subscripts denote partial derivatives.

The streamfunction ψ is defined such that $u=\psi_{y}$ and $v=-\psi_{x}$.
For length scale L and velocity scale U_{0}, the Reynolds number is $R=U_{0} L / \nu$.

1. A two point boundary value problem for the function $h(x)$ is defined by the differential equation

$$
\epsilon(1+3 x) h_{x x}-h=-C
$$

where ϵ is a small positive parameter, C is a constant, and the boundary conditions are

$$
h(0)=1, \quad h(1)=2 .
$$

What property makes this an example of a singular perturbation problem?
(a) For the case $C=2$, determine the location of a boundary layer and find the first terms of the outer and inner asymptotic expansions.
Provide a sketch of the resulting leading order solution for $h(x)$.
Find the second term of the inner expansion.
(b) For the case $C=1$, again find the location of the boundary layer and the first, terms of the inner and outer expansions.
2. What is a basic property of flow represented by a similarity solution?
(a) Consider the standard boundary layer equations for steady flow in the case $U(x)=C x^{m}$, where $C>0$ and m are constants. By choosing a similarity variable $\eta=y /\left(A x^{n}\right)$, where A and n are other constants, and a streamfunction of the form

$$
\psi(x, y)=A C x^{m+n} f(\eta)
$$

show that a similarity solution can be found if $2 n=1-m$. (Note that m and n need not be integers.)
By choosing $A^{2}=\nu /[C(m+n)]$, derive the Falkner-Skan equation

$$
f^{\prime \prime \prime}+f f^{\prime \prime}+m\left(1-f^{\prime 2}\right) /(m+n)=0
$$

When $C=U_{0} / L^{m}$ (i.e. $U(x)=U_{0}(x / L)^{m}$), show that the similarity variable can be written as

$$
\eta=R^{1 / 2}(m+n)^{1 / 2}(y / L)(x / L)^{-n}
$$

(b) The streamfunction for a steady inviscid flow in polar co-ordinates is

$$
\psi=\left(U_{o} L / \lambda\right)(r / L)^{\lambda} \sin [\lambda(\theta-\pi)]
$$

where $\lambda=3 / 2$, and the constants U_{0} and L are velocity and length scales respectively.
Given that $u^{(r)}=\psi_{\theta} / r$ and $u^{(\theta)}=-\psi_{r}$, find expressions for these velocity components.
Show that the lines $\theta=\pi / 3, \theta=\pi$ and $\theta=5 \pi / 3$ are streamlines.
Sketch the streamlines in the region $\pi / 3 \leq \theta \leq 5 \pi / 3$.
(c) How might the result in (a) be used to analyse the boundary layers for flow past a wedge, for which the inviscid flow is that given in (b)? What would be appropriate valucs for m and n in this case?
3. Consider steady flow past a flat plate that lies along $y=0$, between $x=-L$ and $x=0$. The flow is symmetric about $y=0$, and upstream of the plate the flow is $(u, v)=\left(U_{0}, 0\right)$ where U_{0} is a positive constant.
(a) In the wake downstream of the plate the standard boundary layer equations can be used. From those equations, prove that the quantity

$$
\int_{0}^{\infty} u\left(U_{0}-u\right) d y
$$

is independent of x.
(b) Far downstrcam, suppose $u / U_{0}=1-F(x, y)$, where $F \ll 1$. Derive the linearised boundary layer equation

$$
F_{x}=A^{2} F_{y y}
$$

where $A^{2}=\nu / U_{0}$.
(c) By using the substitution $F=f(\eta) / x^{1 / 2}$, where $\eta=y /\left(A x^{1 / 2}\right)$, derive the ordinary differential equation

$$
f^{\prime \prime}+\left(\eta f^{\prime}+f\right) / 2=0
$$

Justify the boundary conditions $f^{\prime}=0$ at $\eta=0$ and $f \rightarrow 0$ as $\eta \rightarrow \infty$.
Find f to within an arbitrary multiplicative constant.
How might the value of that constant be determined?
4. Suppose flow past an obstacle is impulsively started from rest at time $t=0$, such that the inviscid flow at the surface of the obstacle, along $y=0$, is given to be $U(x)$ for $t>0$.

Given that the streamfunction for the flow in the boundary layer has the form

$$
\psi=2(\nu t)^{1 / 2}\left[U F_{0}(\eta)+t U U_{x} F_{1}(\eta)+\text { terms of order } t^{2}\right]
$$

where $\eta=y /(4 \nu t)^{1 / 2}$, find corresponding expressions for u and v.
(a) Derive the ordinary differential equation

$$
F_{0}{ }^{\prime \prime \prime}+2 \eta F_{0}^{\prime \prime}=0
$$

for F_{0}, and also derive three boundary conditions.
(b) Given that

$$
\int_{0}^{\infty} e^{-\lambda^{2}} d \lambda=\sqrt{\pi} / 2
$$

prove that to leading order

$$
u=U(x)(2 / \sqrt{\pi}) \int_{0}^{\eta} e^{-\lambda^{2}} d \lambda
$$

(c) For the case $U(x)=U_{0}\left(1+e^{-x^{2} / L^{2}}\right)$, find the value of x where separation is first expected to occur on the surface of the obstacle. Hence show that separation is first expected at time

$$
t=\left(L / U_{0}\right)(2 e / \pi)^{1 / 2} / F_{1}^{\prime \prime}(0)
$$

(You may assume that $F_{1}{ }^{\prime \prime}(0)$ is positive.)
5. With velocity scaled by U_{0}, distance scaled by L, and pressure scaled by $\rho U_{0}{ }^{2}$, dimensionless equations for steady flow are

$$
\begin{align*}
u u_{x}+v u_{y} & =-p_{x}+R^{-1}\left(u_{x x}+u_{y y}\right) \tag{1}\\
u v_{x}+v v_{y} & =-p_{y}+R^{-1}\left(v_{x x}+v_{y y}\right) \tag{2}
\end{align*}
$$

with $R^{-1} \ll 1$, and $u_{x}+v_{y}=0$. Consider flow past a flat plate lying along $y=0$, between $x=-1$ and $x=0$, with $(u, v)=(1,0)$ far from the plate.
In the context of matched asymptotic expansions, why is a boundary layer required near the plate?
If the inner variable is $Y=y / \epsilon$, state (without proof, but giving a reason) the choice of the small parameter ϵ required to obtain the standard boundary layer equations.
(a) For the triple deck theory required near the trailing edge of the plate, appropriate scales for the upper deck are $W=y / \delta^{3}$ and $X=x / \delta^{3}$, with expansions of the form

$$
\begin{aligned}
\psi & \sim y-\delta^{4} C+\delta^{5} F(X, W) \\
p & \sim \delta^{2} P(X, W)
\end{aligned}
$$

where $\delta^{4}=R^{-1}$ and C is a constant.
What does the term $-\delta^{4} C$ represent?
With these scalings, rewrite (1) and (2) in terms of F and P.
Deduce that $F_{W X}=-P_{X}$ and $F_{X X}=P_{W}$.
Given $V(X, W)=-F_{X}=f(X) g(W)$, show that

$$
V_{X X}+V_{W W}=f_{X X} g+f g_{W W}=0
$$

(b) The boundary conditions for V are $V \rightarrow 0$ as $X \rightarrow \pm \infty$ and $W \rightarrow \infty$, and $V \rightarrow-A_{X}$ as $W \rightarrow 0$ for some function $A(X)$. Prove that

$$
V=-(2 \pi)^{-1} \int_{-\infty}^{\infty} A_{\lambda} \frac{2 W}{W^{2}+(X-\lambda)^{2}} d \lambda
$$

You are given that

$$
\int_{-\infty}^{\infty} e^{i k(X-\lambda)} e^{-|k| W} d k=\frac{2 W}{W^{2}+(X-\lambda)^{2}}
$$

and you may use the Fourier transform relations
$\hat{f}(k)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} f(X) e^{-i k X} d X \quad, \quad f(X)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k X} d k$.
(c) Given that $P \rightarrow 0$ as $W \rightarrow \infty$, and that $V_{X}=-P_{W}$, use the above expression for V to find a similar expression for P.

