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Al l  quest ions m a y  be at tempted but only m a r k s  obtained on the best four  so lu t ions  wil l  

count. 
The use o f  an electronic calculator is n o t  permi t t ed  in  this examina t ion .  

For questions 2 to 5, assume two-dimensional incompressible laminar flow. 

The standard dimensional boundary layer equations for a boundary layer in the neigh- 
bourhood of y=0 are 

u~. + vy = 0 , ut + uu~ + v %  = Ut + UU~ + uuy~ 

Here u and v are velocity components in the x and y directions respectively, t is time, v 
is the kinematic viscosity of the fluid, and U ( x ,  t) is the external flow in the x direction 
at y=O. Subscripts denote partial derivatives. 

The streamfimction ~b is defined such tha t  u=¢y  and v - - - ¢ ~  . 

For length scale L and velocity scale U0, tile Reynolds number is R = U o L / p  . 

1. A two point boundary value problem for the function h ( x )  is defined by the differ- 
ential equation 

c ( l + 3 x ) h ~ .  - h = - C  , 

where e is a small positive parameter, C is a constant, and the boundary conditions 
a r e  

h(0) = 1 , h ( 1 ) =  2 

What  property makes this an example of a singular perturbat ion problem? 

(a) For the case C=2, determine the location of a boundary layer and find the first 
terms of the outer and inner asymptotic expansions. 

Provide a sketch of the resulting leading order solution for h(x)  . 

Find the second term of the inner expansion. 

(b) For the case C=1;  again find the location of the boundary layer and the first 
terms of the inner and outer expansions. 
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2. What  is a basic property of flow represented by a similarity solution? 

(a) Consider the s tandard  boundary layer equations for steady flow in the case 
U(x) = Cx m ; where C > 0 and m are constants. By choosing a similarity 
variable 7? = y / (Ax~) ,  where A and n are other constants, and a streamfimction 
of the form 

¢(x ,y)  = ACxm+"f(r]) , 

show that  a similarity solution can be found if 2n = i - m. (Note that  m and 
n need not be integers.) 

By choosing A 2 = u / [C(m + n)], derive the Falkner-Skan equation 

f ' "  + f f "  + m ( 1 - f ' 2 ) / ( m + n )  = 0 

When C = Uo/L"  
can be written as 

(i.e. U(x) = Uo(x/L) m ), show that  the similarity variable 

?7 = R 1 / 2 (  m -~- n) l / 2 (Y /L ) ( x /L ) -n  

(b) Tile streamfunction for a steady inviseid flow in polar co-ordinates is 

¢ = (UoL/A)(r/L) ~ s in[A(O- 7r)] , 

where A=3/2, and the constants U0 and L are velocity and length scales re- 
spectively. 

Given that u(~)=¢o/r and u(°)=-¢~,  find expressions for these velocity com- 
ponents. 

Show that  the lines 0=7r/3, 0=Tr and 0=57r/3 are streamlines. 

Sketch the streamlines in the region zr/3 < 0 _< 57¢/3 . 

(c) How might the result in (a) be used to analyse the boundary layers for flow 
past a wedge, for which the inviscid flow is that given in (b)? What  would be 
appropriate values/ 'or rn and n in this case? 
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3. Consider steady flow past a flat plate tha t  lies along y=0,  between x = - L  and x=0. 
The flow is symmetric about y=0, and upstream of the plate the flow is (u, v)=(Uo, 0) 
where U0 is a positive constant. 

(a) In the wake downstream of the plate the standard boundary  layer equations 
can be used. From those equations, prove tha t  the quant i ty  

is independent of x. 

(b) Far downstream, suppose 

~o ~ u(Uo - u) dy 

u/Uo = 1 - F(x ,y )  , where F << 1 . 
linearised boundary layer equation 

F~. = A 2 Fy~  , 

Derive the 

where A2=v/Uo.  

(c) By using the substitution F=f(r l ) / z  1/2, where ~?=y/(Azl/2), derive the ordi- 
nary differential equation 

f"  + 07f' + f ) / 2  = 0 

Justi .fy the boundary conditions f~=0 at r/=0 and f --~ 0 as 77 --, cx~. 

Find f to within an arbitrary multiplicative constant.  

How might the value of that  constant be determined? 
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4. Suppose flow past an obstacle is impulsively started from rest at time t=0,  such 
tha t  the inviscid flow at the surface of the obstacle, along y--0, is given to be U(x)  
for t > 0. 

Given tha t  tile streamfimction for the flow in the boundary layer has the form 

~b = 2(vt) 1/2 [ UFo(rl) + tUU~FI(rl) + terms of order t 2 ] 

where r / =  y / (4v t )  1/2 , find corresponding expressions for u and v. 

(a) Derive the ordinary differential equation 

Fo "' + 2fiFo" = 0 

for Fo, and also derive three boundary conditions. 

(b) Given that  

fo = v q / 2  , 
e-A2 d.~ 

prove that  to leading order 

~0 ~? = e-Zd  

(e) For the case U(x)  = U0(1 + e -~'~/L~) , find the value of x where separation 
is first expected to occur on the surface of the obstacle. Hence show that  
separation is first expected at time 

t = (L /Uo) (2e / l r )  1/2 / FI"(O) 

(You may assume tha t  FI"(O) is positive.) 
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5. With velocity scaled by U0, distance scaled by L, and pressure scaled by pUo 2, 
dimensionless equations for steady flow are 

uu~ + vuy = - P x  + R - l ( u x ~ + u y u )  , (1) 

+ vv , = - + + , (2) 
with R -~ << 1 , and u~ + v.~ = 0 .  Consider flow past a fiat plate lying along y=0,  
between x = - I  and x=0,  with (u, v)=(1,0)  far from the plate. 

In the context of matched asymptotic expansions, why is a boundary layer required 
near the plate? 

If the inner variable is Y = y / e ,  state (without proof, but  giving a reason) the choice 
of the small parameter e required to obtain the s tandard boundary layer equations. 

(a) For the triple deck theory required near the trail ing edge of the plate, appro- 
priate scales for the upper deck are W = y / 5  a and X = x / 5  3, with expansions of 
the form 

gJ "- y - 5 4 C  + 5 5 F ( X , W )  , 

p ,.,. 5 2 P ( X , W )  

where 54=R -1 and C is a constant. 

Wha t  does the term - 5 4 C  represent? 

With  these scalings, rewrite (1) and (2) in terms of F and P. 

Deduce that  F w x = - P x  and F x x = P w  . 

Given V ( X ,  W )  = - F x  = f ( X ) g ( W )  , show tha t  

V x x +  V w w  = f x x g +  f g w w  = 0 

(b) The boundary conditions for V are V --* 0 as X --, -t-c~ and W ~ cx~, and 
V ~ - A x  as W ~ 0 for some flmction A ( X ) .  Prove tha t  

V = _ (2~) -1 f o o  
o o  

2W 
Aa dA 

W 2 + ( X  - ,X) 2 

You are given that  

eik(x-~)e-lklW dk = W 2 + ( X  - .X) 2 

and you may use the Fourier transform relations 

/: / ( k )  = (27r) -1/2 f ( X ) e  - ~ k x d x  , 
O 0  

(c) Given that, P --* 0 as W --~ oo , and that  
for V to find a similar expression for P. 

£ f(X) = (2~-) -I/2 f(k,)e ikxdlc 

V x = - P w  , use the above expression 
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