University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M13B: Applied Mathematics 2

COURSE CODE : MATHM13B

UNIT VALUE : 0.50

DATE : 19-MAY-04

TIME $\quad: 14.30$

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

1. A particle of mass m moves on a fixed line $O x$ under a resistance of magnitude $m k v^{2}$ and a restoring force $m f(x)$, where x is its displacement from the fixed point O and $v=\dot{x}$ is its velocity. The particle is projected from O with speed u, comes to rest at $x=a>0$ and then returns to O with speed u_{1}.
(a) Show that the governing equation for the outward motion can be written

$$
\frac{d}{d x}\left(e^{2 k x} v^{2}\right)=-2 e^{2 k x} f(x)
$$

(b) Hence, or otherwise, show that,

$$
u^{2}=2 \int_{0}^{a} f(x) e^{2 k x} d x
$$

(c) Similarly, show that

$$
u_{1}^{2}=2 \int_{0}^{a} f(x) e^{-2 k x} d x
$$

2. The position of a point on a plane curve is given by $\mathbf{r}(s)$, where s is the arc length. If $\mathbf{r}=c \sinh ^{-1}(s / c) \mathbf{i}+\left(s^{2}+c^{2}\right)^{1 / 2} \mathbf{j}$, where \mathbf{i} and \mathbf{j} are constant orthogonal unit vectors and c is a constant, and if $\mathbf{t}(=d \mathbf{r} / d s)$ is the unit vector along the tangent to the curve, find \mathbf{t} in terms of s. Calculate $d \mathrm{t} / d s$ and hence find the unit normal \mathbf{n} and the curvature κ in terms of s.

A particle of mass m is moving along this curve, and its position at time t is given by $s(t)$. Find the velocity ($d \mathbf{r} / d t$) and acceleration of the particle at any time t in terms of s and its derivatives. If the speed of the particle is constant and equal to u, find the force acting on the particle.
3. A particle P moves in a plane under the action of a force $f(r)$ per unit mass directed away from the fixed point O, where r is the length of the line $O P$. Assuming that the path of P does not pass through O, obtain the relations

$$
r^{2} \dot{\theta}=h, \quad \frac{d^{2} u}{d \theta^{2}}+u=\frac{-f(r)}{h^{2} u^{2}}
$$

where h is a constant, $u=1 / r$ and the angle θ is referred to a fixed line through O in the plane of motion.

If $f(r)=k / r^{2}$, where $k>0$ is a constant, and the initial conditions are $r=d, \dot{r}=0$ and $\dot{\theta}=\left(k / d^{3}\right)^{1 / 2}$ at $\theta=0$, show that the equation of the path is

$$
\frac{d}{r}=2 \cos \theta-1
$$

Show also that the speed of the particle tends to the value $(3 k / d)^{1 / 2}$ as r tends to infinity.
4. A particle is moving on the inside of the surface $a z=r^{2}$, where a is a constant and (r, z, θ) are cylindrical polar coordinates with z vertical, r radial, θ azimuthal. The surface is smooth and gravity g acts in the negative z direction. The particle initially is projected horizontally, with speed U, from a point on the surface where $z=4 a$.
(i) If in the subsequent motion the particle always lies between the planes $z=a$ and $z=4 a$, show (using conservation of energy and angular momentum, or otherwise) that $U^{2}=2 g a$.
(ii) Find the magnitude of the radial velocity component as the particle crosses the plane $z=9 a / 4$.
5. The mass of a spacecraft at time t is $m(t)$ and its velocity is $\mathbf{V}(t)$. For $t<0, m(t)=M$ and $\mathbf{V}=U \mathbf{i}$ where M and U are constants and \mathbf{i} is a constant unit vector. For $0<t<T$, the craft encounters a stream of particles which have velocity $w(\cos \alpha \mathbf{i}+\sin \alpha \mathbf{j})$ where w and α are constants and \mathbf{j} is a unit vector orthogonal to \mathbf{i}. A constant mass ρ of the particles enter the craft per unit time and these particles are thereafter stationary relative to the craft.
(a) If $\mathbf{V}=u \mathbf{i}+v \mathbf{j}$, show that

$$
m \frac{d u}{d t}+\frac{d m}{d t} u=\rho w \cos \alpha, \quad m \frac{d v}{d t}+\frac{d m}{d t} v=\rho w \sin \alpha, \quad \frac{d m}{d t}=\rho
$$

(b) Solve these equations to show that at time T the direction of motion of the craft has been turned through an angle β, where

$$
\tan \beta=\frac{\rho w T \sin \alpha}{M U+\rho w T \cos \alpha}
$$

6. The springs of a car of mass M give it a period when empty of τ seconds, for small ${ }^{2}$: vertical oscillations about the equilibrium. These oscillations may be assumed to be simple harmonic.
(i) By making a suitable choice of the direction and origin of y, show that the governing equation for the oscillations is $M \ddot{y}=M g-\lambda y$, and show how to relate λ to τ and M.
(ii) How far does the car sink (in equilibrium) when the driver and three passengers, each of mass m, sit in the car; and what is the new period of small oscillations about the mean?
