UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

Mathematics M13B: Applied Mathematics 2

COURSE CODE	:	MATHM13B
UNIT VALUE	:	0.50
DATE	:	14-MAY-02
TIME	:	14.30
TIME ALLOWED	:	2 hours

02-C0940-3-80

© 2002 University of London

~

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. A bead of unit mass is sliding down a straight wire, inclined at an angle α to the horizontal. The contact is rough, such that the tangential reaction opposing the motion is t multiplied by the normal reaction. Here t denotes time.
 - (a) Show that, if the coordinate y is vertically upward, the bead motion is given by $y = x \tan \alpha$ and

$$\ddot{x} = (t \cos \alpha - \sin \alpha)N, \ddot{y} = (t \sin \alpha + \cos \alpha)N - q,$$

where N(t) > 0 is unknown.

- (b) Deduce, from the equations in (a), or otherwise, that $N(t) = g \cos \alpha$.
- (c) Solve for x(t), given that the bead is released from rest at x = 0 when t = 0. Then show that the bead comes to rest at a horizontal distance $2g \sin^3 \alpha/(3 \cos \alpha)$ from the origin.
- 2. A point particle of mass m moves under gravity on a curve γ , which lies in a vertical plane, with s denoting distance along γ and $\psi(s)$ the (variable) angle of inclination from the horizontal at each position along γ .
 - (i) Show that the tangential and normal components of velocity are \dot{s} , 0 respectively and those of acceleration are \ddot{s} , \dot{s}^2/ρ respectively, where $\rho = ds/d\psi$.
 - (ii) If the reaction force R is normal to the curve, justify the governing equations $\ddot{s} = -g \sin \psi$, $m\dot{s}^2/\rho = R mg \cos \psi$ for the motion.
 - (iii) If, also, γ is defined by $s^2 = \sin \psi$, with $0 < \psi < \pi/2$, and initially $s = s_0, \dot{s} = 0$, solve the governing equations to give \dot{s}^2 as a function of s only and R as a function of ψ only.

MATHM13B

PLEASE TURN OVER

3. The position of a particle, moving in a plane, has polar coordinates r, θ , with corresponding unit vectors $\hat{\mathbf{r}}, \hat{\theta}$, so that its position vector is $\mathbf{r} = r\hat{\mathbf{r}}$. Show that the acceleration of the particle is

$$(\ddot{r}-r\dot{\theta}^2)\mathbf{\hat{r}}+rac{1}{r}rac{d}{dt}(r^2\dot{\theta})\mathbf{\hat{\theta}}.$$

You may assume the rates of change (with respect to t) of $\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}$ to be $\hat{\boldsymbol{\theta}}\hat{\boldsymbol{\theta}}, -\hat{\boldsymbol{\theta}}\hat{\mathbf{r}}$ respectively.

The particle is moving under the action of an unspecified radial force directed towards the origin O. Initially the particle is at $r = a, \theta = 0$, with velocity $u\hat{\theta}$.

- (i) Deduce that $r^2\dot{\theta} = ua$.
- (ii) If the orbit of the particle is a closed curve enclosing an area A, show that the time T for a single circuit is given by T = 2A/ua.
- (iii) Show that O cannot lie outside the orbit.
- 4. The surface of a smooth funnel is given by $z = a^4 r^{-3}$, in cylindrical polar coordinates r, θ, z , with the z-axis vertically downwards. A particle of mass m is projected horizontally with speed u, along the inner surface, at the level z = a.

By considering angular momentum and energy, or otherwise, show that $r^2\dot{\theta} = ua$ and

$$\left(1+9rac{a^8}{r^8}
ight)\dot{r}^2+u^2rac{a^2}{r^2}-2grac{a^4}{r^3}=u^2-2ga,$$

where g denotes gravity.

If the particle is found to be moving horizontally again at the level z = 8a, prove that $u^2 = 14ga/3$.

MATHM13B

CONTINUED

- 5. A heavy body falls vertically through a cloud of particles at rest and accumulates particles at a rate kv (units of mass per unit time) when the body speed is v; here k is a constant. The body is initially at rest and of mass M.
 - (a) Show that after falling a distance x the body has mass m = M + kx.
 - (b) Deduce that the speed v satisfies

$$(M+kx)v\frac{dv}{dx} + kv^2 = (M+kx)g.$$

- (c) Hence or otherwise find v^2 as a function of x, g, k and M.
- 6. The tension T in an elastic string AB of negligible mass is given by T = λ(ℓ₁ ℓ), where ℓ is its natural length, ℓ₁ is its stretched length and λ is a stiffness constant. A particle of mass m₁ is attached to the end B and the end A is fixed. A second string BC of identical natural length and stiffness constant to AB, but with a particle of mass m₂ at the end C, is attached to the first particle at B.
 - (a) Determine the equilibrium lengths of the two strings when the system hangs vertically under gravity.
 - (b) Show that when the particles at B, C are subject to displacements x, y respectively, from equilibrium, their equations of motion are

$$m_1 \ddot{x} = \lambda(y - 2x),$$

$$m_2 \ddot{y} = \lambda(x - y).$$

(c) Deduce that motions are possible in which $x, y \propto \cos \omega t$, and find two possible values for ω^2 .

MATHM13B

END OF PAPER