UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

đ

Mathematics M13A: Applied Mathematics 1

COURSE CODE	:	MATHM13A
UNIT VALUE	:	0.50
DATE	:	10-MAY-04
TIME	:	14.30
TIME ALLOWED	:	2 Hours

TURN OVER

ŧ

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

- 1. (i) Four digits are selected simultaneously at random (without repetition) from $\{0, 1, 2, ..., 9\}$. What is the probability that
 - (a) the four digits form a run? (e.g. 2,3,4,5)
 - (b) they are all greater than 5?
 - (c) they include the digit 0?
 - (d) at least one is greater than 7?
 - (ii) In a workshop, the operation of a machine requires it to be fitted with a component of type A on 18 days of a month which is replaced by a component of type B for the other 12 days. Component A has a .05 chance per day of failing and component B has a .1 chance. The machine fails, and without knowing which type of component was in place on that particular day, an employee writes an order for a replacement component of type B. What is the probability that he made a correct decision?
- 2. If the probability of success in a single trial is p, show that the probability of exactly m successes in N trials is

$$^{N}C_{m}p^{m}q^{N-m}$$

where q = 1 - p.

In a square city, the streets run due North and East, and the intersections are labelled (m, n) where m is the number of blocks East and n the number of blocks North, measured from the South-West corner of the city. Starting from (0, 0), a man walks either in a northerly or easterly direction, his choice at each intersection being decided by rolling a die. If he scores 1 or 2 he moves eastwards; otherwise he moves northwards. Find the probability that, after N moves, he is at the point (m, N - m). Write down the probabilities when N = 6 and show that the most likely location is (2,4) with a probability of nearly 1/3.

MATHM13A

3. Define the moment about the origin of the force \mathbf{F} acting through the point with position vector \mathbf{b} .

Two equal rods of weight w are freely jointed and their free ends are attached by strings to a fixed point. A circular disc of weight W and radius r rests in the angle between the rods, and the whole hangs in a vertical plane. The contact between the disc and the rods is smooth. The length of each rod and of each string is 2a, and 2θ is the angle between the rods. Show that the tension T in each string is given by

$$2T\cos\theta = 2w + W$$

and that the reaction R between the disc and the rods is $\frac{1}{2}W$ cosec θ at each point of contact. Show also that r is related to a by the formula

$$r = \frac{2a(3w + 2W)}{W}\sin^2\theta\tan\theta$$

4. A length of rope is in contact with a rough plane curve. The coefficient of friction between them is µ and the weight of the rope may be neglected. Consider the limiting equilibrium of an element AB of rope that is about to slip in the direction from A to B. Suppose that at A, B the tangents to the curve make intrinsic angles ψ ∓ δψ/2 respectively with a fixed direction, and that the tensions there are T ∓ δT/2. By resolving along and perpendicular to the tangent to the element at the point where the intrinsic angle is ψ, show that dT/dψ = µT.

A light rope is in contact with that part of the rough plane curve $y = a \cosh(x/a)$ from the point C where $\sinh(x/a) = -(\ell/a)$ to the point D where $\sinh(x/a) = a/\ell$. Here a and ℓ are positive constants and the coefficient of friction is μ . The rope is about to slip in the direction from C to D. If the tensions at C and D are T_C and T_D respectively, find the ratio T_D/T_C .

5. A ball is thrown vertically upwards with speed V_0 . Air resistance provides a drag on the ball of cv^2 per unit mass where v is the speed of the ball and c is a positive constant. Find a differential equation relating v and y, the height of the ball, and show that

$$y = \frac{1}{2c} \log_e[(g + cV_0^2)/(g + cv^2)].$$

What is the maximum height reached by the ball?

The ball now returns to its point of projection. With what speed does it hit the ground?

- 1

8

ŝ

6. A particle of unit mass moves on a straight line under the action of a force with potential

$$V(x) = \frac{x^2}{x^4 + a^4}$$

where a is a positive constant. Sketch V(x) and write down the energy equation. The particle is projected from the origin in the positive x-direction with speed λ/a where λ is a positive constant. Describe what happens to the particle if $\lambda \ge 1$.

If, however, $0 < \lambda < 1$, show that the particle oscillates between the points $x = \pm x_0$ where

$$x_0^2 = \frac{a^2}{\lambda^2} \left\{ 1 - (1 - \lambda^4)^{1/2} \right\}.$$

If λ is very small, so that the oscillations are small, show that their amplitude is $a\lambda/2^{1/2}$ approximately.

MATHM13A

ì

:

.

2

÷