UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C371: Analytic Theory Of Numbers

COURSE CODE : MATHC371

UNIT VALUE : 0.50

DATE : 23-MAY-06

TIME
: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Let $a(n)$ be an arithmetic function, and let $A(x)$ be its summation function $A(x)=\sum_{n \leq x} a(n)$. Let f be a continuously differentiable function on the interval $[y, x]$. Express the sum

$$
\sum_{y<n \leq x} a(n) f(n)
$$

using the continuous version of Abel summation.
(b) Use Abel summation to show that

$$
\sum_{p} \frac{1}{p}=\infty \quad \text { and } \quad \sum_{p} \frac{1}{p \log p}<\infty
$$

where the summation is taken over all primes. (Prime number theorem can be used without proof.)
2. (a) Define the following notions:
(i) an arithmetic function is multiplicative
(ii) an arithmetic function is completely multiplicative
(iii) convolution of two arithmetic functions.
(b) Let $\sigma(n)=\sum_{j \mid n} j$ and let $S(x)=\sum_{n \leq x} \sigma(n)$.
(i) Show that $\sigma=1 *$ id, where $1(n)=1$ and $\operatorname{id}(n)=n$ for all n.
(ii) Deduce that $S(x)=\frac{\pi^{2}}{12} x^{2}+q(x)$, where $|q(x)|=O(x \log x)$.
3. (a) Let $a(n)=\mu(n) \log n$, where $\mu(n)$ denotes the Möbius function, and let $A(x)=$ $\sum_{n \leq x} a(n)$. Which function has the Dirichlet series $\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}$? Use the integral version of the prime number theorem to show that

$$
\int_{1}^{\infty} \frac{A(x)}{x^{2}} d x=-1
$$

You may use any valid formula for $\zeta(s)$ and $\zeta^{\prime}(s)$ without proof.
(b) Prove the main lemma of Newmann's proof of the integral version of prime number theorem, namely: if $B: \mathbb{R} \rightarrow \mathbb{R}$ is continuous except possibly at the integers, and has left and right limits at each integer, and

- $B(t)=O(1 / t)$ as $t \rightarrow \infty$;
- $\int_{1}^{\infty} \frac{B(t)}{t^{s}} d t=g(s)$ is a holomorphic function on the halfplane $\{\operatorname{Re} s>0\}$;
- $g(s)$ has a holomorphic extension to a domain that contains $\{\operatorname{Re} s \geq 0\}$;
- $g(0)=0$
then $\int_{1}^{\infty} B(t) d t$ converges and equals to 0 . (The Riemann-Lebesgue Lemma can be used without proof.)

4. (a) Define what is
(i) a character of a finite Abelian group
(ii) a Dirichlet character $\bmod k$
(iii) the function $L(\chi, s)$.
(b) Let χ be any Dirichlet character mod k, and let χ_{0} be the principal character $\bmod k$. Show the following steps of the proof of Dirichlet's theorem about primes in residue classes.
(i) Write the Euler product for χ_{0} and deduce that it has a pole at $s=1$ with residuum $\frac{\phi(k)}{k}$.
(ii) Show that for any $\sigma>1$ and for any t,

$$
\left|L\left(\chi_{0}, \sigma\right)^{3} L(\chi, \sigma+i t)^{4} L\left(\chi^{2}, \sigma+2 i t\right)\right| \geq 1 .
$$

You may use without proof any valid formula for $L(\chi, s)$ and $\log L(\chi, s)$.
(iii) Deduce that if $\chi^{2} \neq \chi_{0}$ or $t \neq 0$, then $L(\chi, 1+i t) \neq 0$.
5. (a) Let $c_{k}(n)$ be the number of k-tuples of primes $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ for which $n=$ $p_{1} p_{2} \cdots p_{k}$. Find an arithmetic function $a(n)$ for which c_{k} is the k-fold convolution $c_{k}=a * a * \cdots * a$.
(b) Let

- $\Pi_{k}(x)=$ number of positive integers $n \leq x$ that are the product of k distinct primes;
- $\pi_{k}(x)=$ number of positive integers $n \leq x$ that are the product of k arbitrary primes;
- $N_{k}(x)=$ number of k-tuples of primes $\left(p_{1}, \ldots, p_{k}\right)$ whith $p_{1} p_{2} \cdots p_{k} \leq x$;

$$
L_{k}(x)=\sum_{p_{1} p_{2} \cdots p_{k} \leq x} \frac{1}{p_{1} p_{2} \cdots p_{k}}
$$

$$
\Theta_{k}(x)=\sum_{p_{1} p_{2} \cdots p_{k} \leq x} \log \left(p_{1} p_{2} \cdots p_{k}\right)
$$

Show the following three main steps in the proof of

$$
\Pi_{k}(x) \sim \pi_{k}(x) \sim \frac{x}{\log x} \cdot \frac{(\log \log x)^{k-1}}{(k-1)!}
$$

(you may assume their validity for $k=1$ without proof):
(i) Show that $L_{k}(x) \sim(\log \log x)^{k}$.
(ii) Deduce that $\Theta_{k}(x) \sim k x(\log \log x)^{k-1}$. You may use without proof the recursive formula

$$
F_{k}(x)=\frac{k}{k-1} \sum_{p \leq x} F_{k-1}\left(\frac{x}{p}\right)
$$

for $F_{k}(x)=\Theta_{k}(x)-k x L_{k-1}(x)$.
(iii) Deduce that $N_{k}(x) \sim \frac{x}{\log x} \cdot k(\log \log x)^{k-1}$.

