UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ĸ

i

9

ALN-K

Mathematics C371: Analytic Theory Of Numbers

COURSE CODE	:	MATHC371
UNIT VALUE	:	0.50
DATE	:	12-MAY-05
TIME	:	10.00
TIME ALLOWED	:	2 Hours

05-C0936-3-30 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Define what it means that
 - (i) an arithmetic function is multiplicative
 - (ii) an arithmetic function is completely multiplicative
 - (iii) convolution of two arithmetic functions.
 - (b) Let $\sigma_r(n) = \sum_{j|n} j^r$.
 - (i) Find an arithmetic function a(n) such that $\sigma_r = a * 1$.
 - (ii) Express $\sum_{n=1}^{\infty} \frac{\sigma_r(n)}{n^s}$ in terms of the ζ -function for suitable s.
 - (iii) Deduce that $\sigma_{-1}(n) = \frac{\sigma_1(n)}{n}$.
- 2. Suppose that a(n) is completely multiplicative and $S_1 = \sum_{n=1}^{\infty} a(n)$ is absolutely convergent.
 - (a) State Euler's product formula and state the corresponding formula for the ζ -function.
 - (b) Define the Möbius function μ and use Euler's product formula to show that $\frac{1}{S_1} = \sum_{n=1}^{\infty} \mu(n) a(n)$.
 - (c) Let $S_2 = \sum_{n=1}^{\infty} a(n)^2$. Show that $\frac{S_1}{S_2} = \sum_{n=1}^{\infty} |\mu(n)| a(n)$ and state the corresponding formula for ζ -function. (Hint: use the equality $\frac{1-a(p)^2}{1-a(p)} = 1 + a(p)$.)

MATHC371

- 3. Show the main step of the proof of prime number theorem, namely: if f is a holomorphic function on a domain that contains $\{\operatorname{Re} s \ge 1\}$ except possibly for s = 1, and a(n) is an arithmetic function with $A(x) = \sum_{n \le x} a(n)$ such that
 - $\sum_{n=1}^{\infty} \frac{a(n)}{n^s}$ converges absolutely to f(s) when $\operatorname{Re} s > 1$;
 - $f(s) = \frac{\alpha}{s-1} + \beta + (s-1)h(s)$, h is holomorphic on a domain that contains {Re $s \ge 1$ };
 - there is a function P(t) such that $|f(\sigma \pm it)| \le P(t)$ when $\sigma \ge 1$ and $t \ge t_0$ $(t_0 \ge 1)$, and also $\int_1^\infty \frac{P(t)}{t^2} dt < \infty$,

then

$$\int_1^\infty \frac{A(y) - \alpha y}{y^2} \, dy = \alpha - \beta.$$

You may use without proof the Riemann-Lebesgue Lemma, and the facts that $\left|\frac{h(s)}{s}\right| \leq \frac{P(t) + |\alpha| + |\beta - \alpha|}{t^2} \text{ (for } s = \sigma \pm it, \ \sigma \geq 1, \ t \geq t_0 \text{) and}$ $\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^{s-1}h(s)}{s} \, ds = \int_1^x \frac{A(y) - \alpha y}{y^2} \, dy - (\beta - \alpha) \left(1 - \frac{1}{x}\right) \text{ (for } x \geq 1, \ c > 1 \text{).}$

- 4. (a) Define what is
 - (i) a character of a finite Abelian group
 - (ii) a Dirichlet character mod k
 - (iii) the function $L(\chi, s)$.
 - (b) Let χ be any Dirichlet character mod k, and let χ_0 be the principal character mod k. Show that for any $\sigma > 1$ and for any t,

$$\left|L(\chi_0,\sigma)^3 L(\chi,\sigma+it)^4 L(\chi^2,\sigma+2it)\right| \ge 1.$$

You may use without proof any valid formula for $L(\chi, s)$ and $\log L(\chi, s)$.

(c) Explain where $L(\chi, s) \neq 0$ was used in the proof of Dirichlet's theorem about prime numbers in residue classes.

MATHC371

- 5. (a) Define the function li(x) and state prime number theorem together with error estimate.
 - (b) Show that

$$I_n(x) \stackrel{\text{def}}{=} \int_e^x \frac{1}{(\log t)^n} \, dt \sim \frac{x}{(\log x)^{n+1}}.$$

(c) Deduce that

.

$$|\pi(x) - \operatorname{li}(x)| < \left|\pi(x) - \frac{x}{\log x}\right|$$

for every large enough x, i.e. li(x) is a better approximation of $\pi(x)$ than $\frac{x}{\log x}$.

 \sim

•