UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

M.SCi.

Mathematics C371: Analytic Theory Of Numbers

COURSE CODE : MATHC371

UNIT VALUE : 0.50

DATE : 01-MAY-02

TIME : $\mathbf{1 0 . 0 0}$

TIME ALLOWED : 2 hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Define the Möbius function $\mu(n)$ and the Euler totient function $\phi(n)$ and the Liouville function $\lambda(n)$. Show that

$$
\phi(n)=\sum_{d \mid n} \mu(d)\left(\frac{n}{d}\right) \text { if } n \geqslant 1 .
$$

For $n \geqslant 1$ evaluate the sums
(a) $\sum_{d \mid n} \mu(d)$
(b) $\sum_{d \mid n} \lambda(d)$.

State what is meant by the terms "multiplicative" and "completely multiplicative" for an arithmetic function. Are $\mu(n)$ and $\lambda(n)$ multiplicative and completely multiplicative? Justify your answers.
2. State Abel's Lemma, indicating clearly the assumptions that you make. Define the Tchebyshev functions $\psi(x)$ and $\theta(x)$ and show that

$$
0 \leqslant \frac{\psi(x)}{x}-\frac{\theta(x)}{x} \leqslant \frac{(\log x)^{2}}{(2 \log 2) x^{\frac{1}{2}}},
$$

for $x>0$. Show that

$$
\theta(x)=\pi(x) \log x-\int_{2}^{x} \frac{\pi(t) d t}{t}
$$

3. Suppose that $f(t) \geqslant 0$ for $t \geqslant 0$ and consider the two conditions
(a) $f(t) \sim t \quad(t \rightarrow \infty)$
(b) $\int_{0}^{x} f(t) d t \sim \frac{x^{2}}{2} \quad(x \rightarrow \infty)$

Show that (a) implies (b) and that (b) implies (a) if the function $g(t)=t f(t)$ is increasing.
State the prime number theorem. Let

$$
\psi_{1}(x)=\int_{1}^{x} \psi(t) d t
$$

where $\psi(t)$ is the Tchebyshev function. Show that the prime number theorem implies that $\psi_{1}(x) \sim \frac{1}{2} x^{2}$ as $x \rightarrow \infty$. The results of Question 2 may be assumed.
4. Define the Dirichlet characters $(\bmod k)$ and show that they are completely multiplicative and periodic with period k. Define the Dirichlet L-function $L(s, \chi)$. What is meant by a non-principal character? Explain why it is important for Dirichlet's theorem about primes in arithmetic progressions to know that $L(1, \chi) \neq 0$ for such a character.
5. Define the von Mangoldt function $\Lambda(n)$. If $\psi_{1}(x)$ is as in Question 3 , show that

$$
\frac{\psi_{1}(x)}{x}=\sum_{n \leqslant x}(x-n) \Lambda(n) .
$$

Show that, if $c>1$ and $x \geqslant 1$,

$$
\frac{\psi_{1}(x)}{x^{2}}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s-1}}{s(s+1)}\left[-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right] d s .
$$

(You may assume the relations

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{u^{-z} d z}{z(z+1) \ldots(z+k)} & =\frac{1}{k!}(1-u)^{k} \text { if } 0<u \leqslant 1 \\
& =0 \text { if } u>1
\end{aligned}
$$

and

$$
\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}=-\frac{\zeta^{\prime}(s)}{\zeta(s)} .
$$

Indicate clearly, but without proof, how the above representation can lead to a proof of the prime number theorem.

