UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

M.Sci.

Mathematics C371: Analytic Theory Of Numbers

COURSE CODE	:	MATHC371
UNIT VALUE	:	0.50
DATE	:	01-MAY-02
TIME	:	10.00
TIME ALLOWED	:	2 hours

02-C0921-3-30

© 2002 University of London

~

TURN OVER

-

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Define the Möbius function $\mu(n)$ and the Euler totient function $\phi(n)$ and the Liouville function $\lambda(n)$. Show that

$$\phi(n) = \sum_{d|n} \mu(d) \left(\frac{n}{d}\right) \text{ if } n \ge 1.$$

For $n \ge 1$ evaluate the sums

(a)
$$\sum_{d|n} \mu(d)$$

(b) $\sum_{d|n} \lambda(d)$.

State what is meant by the terms "multiplicative" and "completely multiplicative" for an arithmetic function. Are $\mu(n)$ and $\lambda(n)$ multiplicative and completely multiplicative? Justify your answers.

2. State Abel's Lemma, indicating clearly the assumptions that you make. Define the Tchebyshev functions $\psi(x)$ and $\theta(x)$ and show that

$$0 \leqslant \frac{\psi(x)}{x} - \frac{\theta(x)}{x} \leqslant \frac{(\log x)^2}{(2\log 2)x^{\frac{1}{2}}},$$

for x > 0. Show that

$$\theta(x) = \pi(x) \log x - \int_2^x \frac{\pi(t)dt}{t}.$$

PLEASE TURN OVER

MATHC371

- 3. Suppose that $f(t) \ge 0$ for $t \ge 0$ and consider the two conditions
 - (a) $f(t) \sim t$ $(t \to \infty)$ (b) $\int_0^x f(t)dt \sim \frac{x^2}{2}$ $(x \to \infty)$

Show that (a) implies (b) and that (b) implies (a) if the function g(t) = t f(t) is increasing.

State the prime number theorem. Let

$$\psi_1(x) = \int_1^x \psi(t) dt,$$

where $\psi(t)$ is the Tchebyshev function. Show that the prime number theorem implies that $\psi_1(x) \sim \frac{1}{2}x^2$ as $x \to \infty$. The results of Question 2 may be assumed.

- 4. Define the Dirichlet characters (modk) and show that they are completely multiplicative and periodic with period k. Define the Dirichlet L-function $L(s, \chi)$. What is meant by a non-principal character? Explain why it is important for Dirichlet's theorem about primes in arithmetic progressions to know that $L(1, \chi) \neq 0$ for such a character.
- 5. Define the von Mangoldt function $\Lambda(n)$. If $\psi_1(x)$ is as in Question 3, show that

$$\frac{\psi_1(x)}{x} = \sum_{n \leqslant x} (x - n) \Lambda(n).$$

Show that, if c > 1 and $x \ge 1$,

$$\frac{\psi_1(x)}{x^2} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^{s-1}}{s(s+1)} \left[-\frac{\zeta'(s)}{\zeta(s)} \right] ds.$$

(You may assume the relations

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{u^{-z} dz}{z(z+1)\dots(z+k)} = \frac{1}{k!} (1-u)^k \text{ if } 0 < u \le 1$$

= 0 if $u > 1$

and

$$\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} = -\frac{\zeta'(s)}{\zeta(s)}.$$

Indicate clearly, but without proof, how the above representation can lead to a proof of the prime number theorem.

MATHC371

END OF PAPER