UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

5

ð

Mathematics M212: Analysis 4: Real Analysis

COURSE CODE	:	MATHM212
UNIT VALUE	:	0.50
DATE	:	24-MAY-06
TIME	:	14.30
TIME ALLOWED	:	2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Define what it means for a sequence of functions $\{f_n\}_{n=1}^{\infty}$ to converge uniformly on an interval [a, b].
 - (b) Prove that if $f_n \to f$ uniformly on [a, b], and each f_n is continuous on [a, b], then f is continuous on [a, b].
 - (c) Prove that if $f_n \to f$ uniformly on [a, b], and each f_n is Riemann integrable on [a, b], then f is Riemann integrable on [a, b] and $\int_a^b f_n(x)dx \to \int_a^b f(x)dx$ as $n \to \infty$.
 - (d) Suppose that $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ are two sequences of functions on $I \subset \mathbb{R}$ such that both $f_n \to f$ and $g_n \to g$ uniformly on I, where g is a positive function. Is it true that $\frac{f_n}{g_n} \to \frac{f}{g}$ uniformly on I? Justify your answer. [Hint: I does not have to be a closed interval].
- 2. Prove that for any continuous function f on the interval [0, 1] there exists a sequence $\{B_n(f)\}_{n=1}^{\infty}$ of polynomials with $B_n(f) \to f$ uniformly on [0, 1]. You may use the properties of the functions p_{nk} without proof.
- 3. (a) Define the *Fourier series* of a Riemann integrable function f on an interval [a, b] with respect to an orthonormal system $(\phi_k)_{k=1}^{\infty}$.
 - (b) Let $\{a_j\}$ be the Fourier coefficients of a Riemann integrable function f on an interval [a, b] with respect to an orthonormal system $(\phi_k)_{k=1}^{\infty}$ Show that for each natural n and any numbers $c_1, c_2, \ldots c_n$ the following inequality holds:

$$\int_a^b \left(f(x) - \sum_{k=1}^n a_k \phi_k(x)\right)^2 dx \le \int_a^b \left(f(x) - \sum_{k=1}^n c_k \phi_k(x)\right)^2 dx,$$

with equality only in the case $c_j = a_j$ for all j = 1, 2, ..., n.

(c) Let $S_n = \sum_{k=1}^n a_k \phi_k$ be the partial sum of the Fourier series of f. (i) Is it true that

$$\lim_{n,m\to\infty}\int_a^b \left(S_n(x)-S_m(x)\right)^2 dx=0?$$

(ii) Is it true that S_n converges to f pointwise on [a, b]?

Justify your answers.

MATHM212

PLEASE TURN OVER

- 4. (a) Define the terms metric space, open ball, closed ball, open set and closed set.
 - (b) Let (X, d) be a metric space. Prove that $A \subset X$ is closed if and only if every sequence of points in A that converges in (X, d) converges to a point in A.
 - (c) Prove that any closed ball is a closed set.
 - (d) Let $y_1, y_2 \in X$ and $r \in \mathbb{R}$. Define

$$H(y_1, y_2, r) = \{x \in X : d(x, y_1) - d(x, y_2) < r\}.$$

Prove that $H(y_1, y_2, r)$ is an open set.

- 5. (a) Define a contraction mapping in a metric space.
 - (b) State and prove the Contraction Mapping Theorem.
 - (c) Let T be a contraction mapping with $d(Tx, Ty) \leq \frac{d(x,y)}{2}$ for each $x, y \in X$. Suppose, $z \in X$ is a point such that any other point from X lies within distance 1 from z. For which smallest n can we guarantee that $T^n(z)$ is within distance 10^{-3} from the fixed point of T?
 - (d) Prove that the system of equations

$$\sin(4y) + 5 - x = 0$$

 $\cos(x/5) - 3 - y = 0$

has a unique real solution (x, y).

- 6. (a) Define the operator norm ||T|| of a linear map $T : \mathbb{R}^n \to \mathbb{R}^n$. Prove that if $S : \mathbb{R}^n \to \mathbb{R}^n$ is linear then $||S + T|| \le ||S|| + ||T||$ and $||ST|| \le ||S|| ||T||$
 - (b) Prove that if a linear map $A : \mathbb{R}^n \to \mathbb{R}^n$ satisfies $||Ax||_2 \ge 2||x||_2$ for all $x \in \mathbb{R}^n$ then I+A is invertible. [Hint: you may wish to use the fact that if $T : \mathbb{R}^n \to \mathbb{R}^n$ satisfies ||T|| < 1, then I T is invertible, but you would have to prove this.]

MATHM212

END OF PAPER