University of London

## EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M212: Analysis 4: Real Analysis

```
COURSE CODE : MATHM212
UNIT VALUE : 0.50
DATE : 24-MAY-06
TIME : 14.30
TIME ALLOWED : 2 Hours
```

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define what it means for a sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ to converge uniformly on an interval $[a, b]$.
(b) Prove that if $f_{n} \rightarrow f$ uniformly on $[a, b]$, and each $f_{n}$ is continuous on $[a, b]$, then $f$ is continuous on $[a, b]$.
(c) Prove that if $f_{n} \rightarrow f$ uniformly on $[a, b]$, and each $f_{n}$ is Riemann integrable on $[a, b]$, then $f$ is Riemann integrable on $[a, b]$ and $\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x$ as $n \rightarrow \infty$.
(d) Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ and $\left\{g_{n}\right\}_{n=1}^{\infty}$ are two sequences of functions on $I \subset \mathbb{R}$ such that both $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly on $I$, where $g$ is a positive function. Is it true that $\frac{f_{n}}{g_{n}} \rightarrow \frac{I}{g}$ uniformly on $I$ ? Justify your answer. [Hint: $I$ does not have to be a closed interval].
2. Prove that for any continuous function $f$ on the interval $[0,1]$ there exists a sequence $\left\{B_{n}(f)\right\}_{n=1}^{\infty}$ of polynomials with $B_{n}(f) \rightarrow f$ uniformly on [0,1]. You may use the properties of the functions $p_{n k}$ without proof.
3. (a) Define the Fourier series of a Riemann integrable function $f$ on an interval $[a, b]$ with respect to an orthonormal system $\left(\phi_{k}\right)_{k=1}^{\infty}$.
(b) Let $\left\{a_{j}\right\}$ be the Fourier coefficients of a Riemann integrable function $f$ on an interval $[a, b]$ with respect to an orthonormal system $\left(\phi_{k}\right)_{k=1}^{\infty}$ Show that for each natural $n$ and any numbers $c_{1}, c_{2}, \ldots c_{n}$ the following inequality holds:

$$
\int_{a}^{b}\left(f(x)-\sum_{k=1}^{n} a_{k} \phi_{k}(x)\right)^{2} d x \leq \int_{a}^{b}\left(f(x)-\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right)^{2} d x
$$

with equality only in the case $c_{j}=a_{j}$ for all $j=1,2, \ldots n$.
(c) Let $S_{n}=\sum_{k=1}^{n} a_{k} \phi_{k}$ be the partial sum of the Fourier series of $f$.
(i) Is it true that

$$
\lim _{n, m \rightarrow \infty} \int_{a}^{b}\left(S_{n}(x)-S_{m}(x)\right)^{2} d x=0 ?
$$

(ii) Is it true that $S_{n}$ converges to $f$ pointwise on $[a, b]$ ? Justify your answers.
4. (a) Define the terms metric space, open ball, closed ball, open set and closed set.
(b) Let ( $X, d$ ) be a metric space. Prove that $A \subset X$ is closed if and only if every sequence of points in $A$ that converges in $(X, d)$ converges to a point in $A$.
(c) Prove that any closed ball is a closed set.
(d) Let $y_{1}, y_{2} \in X$ and $r \in \mathbb{R}$. Define

$$
H\left(y_{1}, y_{2}, r\right)=\left\{x \in X: d\left(x, y_{1}\right)-d\left(x, y_{2}\right)<r\right\}
$$

Prove that $H\left(y_{1}, y_{2}, r\right)$ is an open set.
5. (a) Define a contraction mapping in a metric space.
(b) State and prove the Contraction Mapping Theorem.
(c) Let $T$ be a contraction mapping with $d(T x, T y) \leq \frac{d(x, y)}{2}$ for each $x, y \in X$. Suppose, $z \in X$ is a point such that any other point from $X$ lies within distance 1 from $z$. For which smallest $n$ can we guarantee that $T^{n}(z)$ is within distance $10^{-3}$ from the fixed point of $T$ ?
(d) Prove that the system of equations

$$
\begin{gathered}
\sin (4 y)+5-x=0 \\
\cos (x / 5)-3-y=0
\end{gathered}
$$

has a unique real solution $(x, y)$.
6. (a) Define the operator norm $\|T\|$ of a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Prove that if $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear then $\|S+T\| \leq\|S\|+\|T\|$ and $\|S T\| \leq\|S\|\|T\|$
(b) Prove that if a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $\|A x\|_{2} \geq 2\|x\|_{2}$ for all $x \in \mathbb{R}^{n}$ then $I+A$ is invertible. [Hint: you may wish to use the fact that if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies $\|T\|<1$, then $I-T$ is invertible, but you would have to prove this.]

