UNIVERSITY COLLEGE LONDON

11

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

5

1

Mathematics M212: Analysis 4: Real Analysis

COURSE CODE	: MATHM212
UNIT VALUE	: 0.50
DATE	: 24 - MAY-05
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

05-C0962-3-110 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Define what it means for a sequence of functions $\{f_n\}_{n=1}^{\infty}$ to converge uniformly on an interval [a, b].
 - (b) Prove that if $f_n \to f$ uniformly on [a, b], and each f_n is continuous on [a, b], then f is continuous on [a, b].
 - (c) Prove that if $f_n \to f$ pointwise on [a, b], f_n and f are continuous functions and for each $x \in [a, b]$ the sequence $\{f_n(x)\}$ is monotone, then $f_n \to f$ uniformly.
 - (d) Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of differentiable functions on \mathbb{R} such that $f_n(x) \to 0$ pointwise and $f'_n(x) \to 0$ pointwise. Must $f_n \to 0$ uniformly?
- 2. (a) State the Weierstrass *M*-test.
 - (b) Prove that there exists a continuous function on the real line which is nowhere differentiable.
- 3. (a) Define the Fourier series $\sum_{n=1}^{\infty} a_n \phi_n$ of a Riemann integrable function f on an interval [a, b] with respect to an orthonormal system $(\phi_n)_{n=1}^{\infty}$.
 - (b) Show that

1

$$\sum_{n=1}^{\infty} a_n^2 \le \int_a^b f(x)^2 dx.$$

(c) By considering the Fourier series of f(x) = x with respect to an appropriate orthonormal system on $[-\pi, \pi]$, prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \le \frac{\pi^2}{6}.$$

PLEASE TURN OVER

MATHM212

- 4. (a) Define the terms metric space, open ball, closed ball, open set and closed set.
 - (b) Let (X, d) be a metric space. Prove that $A \subset X$ is closed if and only if every sequence of points in A that converges in (X, d) converges to a point in A.
 - (c) Prove that if (X, d) is a metric space and $(F_j)_{j \in J}$ is a collection of closed subsets of X then $\bigcap_{j \in J} F_j$ is closed.
 - (d) Prove that if (X, d) is a metric space, n is a positive integer, and $(F_j)_{j=1}^n$ are closed subsets of X then $\bigcup_{j \in J} F_j$ is closed.
 - (e) If (X, d) is a metric space and $(F_j)_{j=1}^{\infty}$ are closed subsets of X then must $\bigcup_{j=1}^{\infty} F_j$ be closed?
- 5. (a) Define a *contraction mapping* in a metric space.
 - (b) State and prove the Contraction Mapping Theorem.
 - (c) Give examples showing that the condition of the mapping T being a contraction mapping in (b) cannot be replaced by the condition d(Tx, Ty) < d(x, y).
 - (d) Prove that the equation

L

$$\sin(x/4) + 4 - x = 0$$

- has a unique real solution.
- 6. (a) Define the operator norm ||T|| of a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$. Prove that if $S : \mathbb{R}^m \to \mathbb{R}^p$ is linear then $||ST|| \leq ||S|| ||T||$.
 - (b) Prove that if a linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ has norm ||T|| < 1 then I T is invertible.
 - (c) Let $S : \mathbb{R}^4 \to \mathbb{R}$ be given by $S(x_1, \ldots, x_4) = x_1 2x_2 + 3x_3 4x_4$. Find ||S||.

MATHM212

END OF PAPER