UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M212: Analysis 4: Real Analysis

COURSE CODE	$:$ MATHM212
UNIT VALUE	$: 0.50$
DATE	$: 14-$ MAY-04
TIME	14.30
TIME ALLOWED	$: 2$ Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define what it means for a sequence of functions $\left(f_{n}(x)\right)_{n=1}^{\infty}$ to converge uniformly on an interval $[a, b]$.
(b) Prove that if $f_{n}(x) \rightarrow f(x)$ uniformly on $[a, b]$, and each f_{n} is continuous on $[a, b]$, then f is continuous on $[a, b]$.
(c) Prove that if $f_{n}(x) \rightarrow f(x)$ uniformly on $[a, b]$, and each f_{n} is Riemann integrable, then f is Riemann integrable and $\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x$ as $n \rightarrow \infty$.
(d) Suppose that $\left(f_{n}(x)\right)_{n=1}^{\infty}$ is a sequence of continuous functions on $[0,1]$ such that $f_{n}(x) \rightarrow 0$ pointwise and $\int_{0}^{1} f_{n}(x) d x=0$ for every n. Must $f_{n}(x) \rightarrow 0$ uniformly?
2. (a) Define what it means for a function $f(x)$ to be uniformly continuous on $[0,1]$.
(b) Prove that every continuous function on $[0,1]$ is uniformly continuous.
(c) Prove that if $f(x)$ is continuous on $[0,1]$ then there is a sequence of polynomials that converges uniformly to $f(x)$ on $[0,1]$.
[You may assume standard facts about the polynomials $p_{n k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$, provided that you state them clearly.]
3. (a) Define the Fourier series $\sum_{n=1}^{\infty} a_{n} \phi_{n}$ of a Riemann integrable function f on an interval $[a, b]$ with respect to an orthonormal system $\left(\phi_{n}\right)_{n=1}^{\infty}$.
(b) Show that $\sum_{n=1}^{\infty} a_{n}^{2} \leqslant \int_{a}^{b} f(x)^{2} d x$. Deduce that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(c) By considering the Fourier series of $f(x)=x$ with respect to an appropriate orthonormal system on $[-\pi, \pi]$, prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \leqslant \frac{\pi^{2}}{6}
$$

4. (a) Define what it means for a function $d: X \times X \rightarrow \mathbb{R}$ to be a metric. Define the terms open ball and open set.
(b) Let $\left(X, d_{X}\right)$ and (Y, d_{Y}) be metric spaces. Define what it means for a function $f: X \rightarrow Y$ to be continuous. Prove that if $f: X \rightarrow Y$ is continuous and G is an open subset of Y then $f^{-1}(G)$ is open in X.
(c) Define what it means for a set K in a metric space to be compact. Prove that a continuous image of a compact set is compact.
(d) Prove that if K is compact then every sequence of points of K has a convergent subsequence.
(e) Consider the space $X=\left(C[0,1],\|\cdot\|_{1}\right)$ of continuous functions on $[0,1]$ with the norm

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x
$$

Prove that the closed unit ball of X is not compact.
5. (a) Define a contraction mapping $f: X \rightarrow X$ in a metric space (X, d).
(b) State and prove the Contraction Mapping Theorem.
(c) Suppose that $0 \leqslant c<1$, and $f_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are functions such that, for every $x_{1}, x_{2}, y_{1}, y_{2}$,

$$
\left|f_{1}\left(x_{1}, y_{1}\right)-f_{1}\left(x_{2}, y_{2}\right)\right| \leqslant c\left|x_{1}-x_{2}\right|
$$

and

$$
\left|f_{2}\left(x_{1}, y_{1}\right)-f_{2}\left(x_{2}, y_{2}\right)\right| \leqslant c\left|y_{1}-y_{2}\right| .
$$

Prove that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)
$$

has a unique fixed point.
6. (a) Define the operator norm $\|T\|$ of a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Prove that if $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is linear then $\|S T\| \leqslant\|S\| \cdot\|T\|$.
(b) Prove that if T is a linear map from \mathbb{R}^{n} to \mathbb{R}^{n} and $\|T\|<1$ then $I-T$ is invertible. [You may assume that the space $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ of linear maps from \mathbb{R}^{n} to \mathbb{R}^{n} is complete with the operator norm.]
(c) Define what it means for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be differentiable at $\mathbf{x} \in \mathbb{R}^{n}$. Define the derivative $D f(\mathbf{x})$ and the Jacobian matrix $J f(\mathbf{x})$ at a point $\mathbf{x} \in \mathbb{R}^{n}$.
(d) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at \mathbf{x}. Prove that the partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})$ exist and that $D f(\mathbf{x})$ can be represented by $J f(\mathbf{x})$.
(e) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}
$$

for $(x, y) \neq(0,0)$, and

$$
f(0,0)=0
$$

Show that the Jacobian matrix exists at the point $(0,0)$, but that f is not differentiable at $(0,0)$.

