UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

~

Mathematics M212: Analysis 4: Real Analysis

COURSE CODE	:	MATHM212
UNIT VALUE	:	0.50
DATE	:	14-MAY-04
TIME	:	14.30
TIME ALLOWED	:	2 Hours

04-C0956-3-120 © 2004 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. (a) Define what it means for a sequence of functions $(f_n(x))_{n=1}^{\infty}$ to converge uniformly on an interval [a, b].

(b) Prove that if $f_n(x) \to f(x)$ uniformly on [a, b], and each f_n is continuous on [a, b], then f is continuous on [a, b].

(c) Prove that if $f_n(x) \to f(x)$ uniformly on [a, b], and each f_n is Riemann integrable, then f is Riemann integrable and $\int_a^b f_n(x)dx \to \int_a^b f(x)dx$ as $n \to \infty$.

(d) Suppose that $(f_n(x))_{n=1}^{\infty}$ is a sequence of continuous functions on [0, 1] such that $f_n(x) \to 0$ pointwise and $\int_0^1 f_n(x) dx = 0$ for every *n*. Must $f_n(x) \to 0$ uniformly?

2. (a) Define what it means for a function f(x) to be uniformly continuous on [0, 1].

(b) Prove that every continuous function on [0, 1] is uniformly continuous.

(c) Prove that if f(x) is continuous on [0, 1] then there is a sequence of polynomials that converges uniformly to f(x) on [0, 1].

[You may assume standard facts about the polynomials $p_{nk}(x) = \binom{n}{k} x^k (1-x)^{n-k}$, provided that you state them clearly.]

3. (a) Define the Fourier series $\sum_{n=1}^{\infty} a_n \phi_n$ of a Riemann integrable function f on an interval [a, b] with respect to an orthonormal system $(\phi_n)_{n=1}^{\infty}$.

(b) Show that $\sum_{n=1}^{\infty} a_n^2 \leq \int_a^b f(x)^2 dx$. Deduce that $a_n \to 0$ as $n \to \infty$.

(c) By considering the Fourier series of f(x) = x with respect to an appropriate orthonormal system on $[-\pi, \pi]$, prove that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \leqslant \frac{\pi^2}{6}.$$

MATHM212

PLEASE TURN OVER

4. (a) Define what it means for a function $d: X \times X \to \mathbb{R}$ to be a *metric*. Define the terms open ball and open set.

(b) Let (X, d_X) and (Y, d_Y) be metric spaces. Define what it means for a function $f: X \to Y$ to be *continuous*. Prove that if $f: X \to Y$ is continuous and G is an open subset of Y then $f^{-1}(G)$ is open in X.

(c) Define what it means for a set K in a metric space to be *compact*. Prove that a continuous image of a compact set is compact.

(d) Prove that if K is compact then every sequence of points of K has a convergent subsequence.

(e) Consider the space $X = (C[0, 1], ||.||_1)$ of continuous functions on [0, 1] with the norm

$$||f||_1 = \int_0^1 |f(x)| dx.$$

Prove that the closed unit ball of X is not compact.

- 5. (a) Define a contraction mapping $f: X \to X$ in a metric space (X, d).
 - (b) State and prove the Contraction Mapping Theorem.

(c) Suppose that $0 \leq c < 1$, and $f_1 : \mathbb{R}^2 \to \mathbb{R}$ and $f_2 : \mathbb{R}^2 \to \mathbb{R}$ are functions such that, for every x_1, x_2, y_1, y_2 ,

$$|f_1(x_1, y_1) - f_1(x_2, y_2)| \leqslant c |x_1 - x_2|$$

and

$$|f_2(x_1, y_1) - f_2(x_2, y_2)| \leq c|y_1 - y_2|.$$

Prove that the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x,y) = (f_1(x,y), f_2(x,y))$$

has a unique fixed point.

MATHM212

CONTINUED

P

I

6. (a) Define the operator norm ||T|| of a linear map $T : \mathbb{R}^n \to \mathbb{R}^m$. Prove that if $S : \mathbb{R}^m \to \mathbb{R}^p$ is linear then $||ST|| \leq ||S|| \cdot ||T||$.

(b) Prove that if T is a linear map from \mathbb{R}^n to \mathbb{R}^n and ||T|| < 1 then I - T is invertible. [You may assume that the space $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ of linear maps from \mathbb{R}^n to \mathbb{R}^n is complete with the operator norm.]

(c) Define what it means for a function $f : \mathbb{R}^n \to \mathbb{R}^m$ to be differentiable at $\mathbf{x} \in \mathbb{R}^n$. Define the derivative $Df(\mathbf{x})$ and the Jacobian matrix $Jf(\mathbf{x})$ at a point $\mathbf{x} \in \mathbb{R}^n$.

(d) Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at **x**. Prove that the partial derivatives $\frac{\partial f_i}{\partial x_j}(\mathbf{x})$ exist and that $Df(\mathbf{x})$ can be represented by $Jf(\mathbf{x})$.

(e) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$

for $(x, y) \neq (0, 0)$, and

$$f(0,0) = 0.$$

Show that the Jacobian matrix exists at the point (0,0), but that f is not differentiable at (0,0).

MATHM212

END OF PAPER