University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M212: Analysis 4: Real Analysis

COURSE CODE	$:$ MATHM212
UNIT VALUE	$: 0.50$
DATE	$: 27-M A Y-03$
TIME	$: 14.30$
TIME ALLOWED	$: 2$ Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define what it means for a sequence of functions $\left(f_{n}(x)\right)_{n=1}^{\infty}$ to converge uniformly on an interval $[a, b]$.
(b) Prove that if $f_{n}(x) \rightarrow f(x)$ uniformly on $[a, b]$, and each f_{n} is continuous on $[a, b]$, then f is continuous on $[a, b]$.
(c) Prove that if $f_{n}(x) \rightarrow f(x)$ uniformly on $[a, b]$, and each f_{n} is Riemann integrable, then f is Riemann integrable and $\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x$ as $n \rightarrow \infty$.
(d) Suppose that $f_{n}(x) \rightarrow f(x)$ pointwise on $[a, b]$, and that f and each f_{n} are Riemann integrable. Suppose also that $\int_{a}^{b} f_{n}(x) d x=0$ for each n and $\int_{a}^{b} f(x) d x=0$. Must $f_{n}(x) \rightarrow f(x)$ uniformly?
2. (a) State the Weierstrass M-test.
(b) Prove that there exists a real continuous function on the real line that is nowhere differentiable.
3. (a) Define what it means for a function $d: X \times X \rightarrow \mathbb{R}$ to be a metric. Define the terms open ball, closed ball, open set and closed set.
(b) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. Define what it means for a function $f: X \rightarrow Y$ to be continuous. Prove that if $f: X \rightarrow Y$ is continuous then $f^{-1}(G)$ is open in X whenever G is open in Y.
(c) Define what it means for a set K in a metric space to be compact. Prove that a continuous image of a compact set is compact.
(d) Prove that a finite union of compact sets is compact.
(e) Must the union of an infinite sequence K_{1}, K_{2}, \ldots of compact sets be compact?
4. (a) Define a contraction mapping in a metric space.
(b) State and prove the Contraction Mapping Theorem.
(c) Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is a continuous function such that

$$
|f(x)-f(y)|<|x-y|
$$

for all $x, y \in[0, \infty)$ with $x \neq y$. Must f have a fixed point?
5. (a) Prove that if f is Riemann integrable on $[a, b]$ then

$$
\lim _{\lambda \rightarrow \infty} \int_{a}^{b} f(x) \cos (\lambda x) d x=0
$$

(b) Define the Dirichlet kernel $D_{n}(t)$.
(c) Suppose that f is Riemann integrable on $[-\pi, \pi]$. Define the Fourier coefficients of f and, for $n \geqslant 1$, the partial sum s_{n} of the Fourier series. Prove that, for $n \geqslant 1$,

$$
s_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) D_{n}(x-t) d t .
$$

6. (a) Define the norm $\|T\|$ of a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
(b) Define what it means for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be differentiable at $\mathrm{x} \in \mathbb{R}^{n}$.
(c) Define the Jacobian matrix $J f(\mathbf{x})$ for a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and prove that $D f(\mathbf{x})$ can be represented by $J f(\mathbf{x})$.
(d) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has all partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ at $\mathbf{x} \in \mathbb{R}^{n}$. Must f be differentiable at x ?
(e) State the Chain Rule for differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$. If f is invertible and f^{-1} is differentiable at $\mathbf{y}=f(\mathbf{x})$, what is $D f^{-1}(\mathbf{y})$?
