UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٦

Mathematics M212: Analysis 4: Real Analysis

COURSE CODE	:	MATHM212
UNIT VALUE	:	0.50
DATE	:	27-MAY-03
TIME	:	14.30
TIME ALLOWED	:	2 Hours

03-C0949-3-110 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. (a) Define what it means for a sequence of functions $(f_n(x))_{n=1}^{\infty}$ to converge uniformly on an interval [a, b].

(b) Prove that if $f_n(x) \to f(x)$ uniformly on [a, b], and each f_n is continuous on [a, b], then f is continuous on [a, b].

(c) Prove that if $f_n(x) \to f(x)$ uniformly on [a, b], and each f_n is Riemann integrable, then f is Riemann integrable and $\int_a^b f_n(x)dx \to \int_a^b f(x)dx$ as $n \to \infty$.

(d) Suppose that $f_n(x) \to f(x)$ pointwise on [a, b], and that f and each f_n are Riemann integrable. Suppose also that $\int_a^b f_n(x) dx = 0$ for each n and $\int_a^b f(x) dx = 0$. Must $f_n(x) \to f(x)$ uniformly?

2. (a) State the Weierstrass M-test.

(b) Prove that there exists a real continuous function on the real line that is nowhere differentiable.

3. (a) Define what it means for a function $d: X \times X \to \mathbb{R}$ to be a *metric*. Define the terms open ball, closed ball, open set and closed set.

(b) Let (X, d_X) and (Y, d_Y) be metric spaces. Define what it means for a function $f: X \to Y$ to be *continuous*. Prove that if $f: X \to Y$ is continuous then $f^{-1}(G)$ is open in X whenever G is open in Y.

(c) Define what it means for a set K in a metric space to be *compact*. Prove that a continuous image of a compact set is compact.

(d) Prove that a finite union of compact sets is compact.

(e) Must the union of an infinite sequence K_1, K_2, \ldots of compact sets be compact?

MATHM212

PLEASE TURN OVER

- 4. (a) Define a *contraction mapping* in a metric space.
 - (b) State and prove the Contraction Mapping Theorem.
 - (c) Suppose that $f:[0,\infty)\to [0,\infty)$ is a continuous function such that

$$|f(x) - f(y)| < |x - y|$$

for all $x, y \in [0, \infty)$ with $x \neq y$. Must f have a fixed point?

5. (a) Prove that if f is Riemann integrable on [a, b] then

$$\lim_{\lambda \to \infty} \int_a^b f(x) \cos(\lambda x) dx = 0.$$

(b) Define the Dirichlet kernel $D_n(t)$.

(c) Suppose that f is Riemann integrable on $[-\pi, \pi]$. Define the Fourier coefficients of f and, for $n \ge 1$, the partial sum s_n of the Fourier series. Prove that, for $n \ge 1$,

$$s_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) dt.$$

6. (a) Define the norm ||T|| of a linear map $T : \mathbb{R}^n \to \mathbb{R}^n$.

(b) Define what it means for a function $f : \mathbb{R}^n \to \mathbb{R}^m$ to be differentiable at $\mathbf{x} \in \mathbb{R}^n$.

(c) Define the Jacobian matrix $Jf(\mathbf{x})$ for a differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$ and prove that $Df(\mathbf{x})$ can be represented by $Jf(\mathbf{x})$.

(d) Suppose that $f : \mathbb{R}^n \to \mathbb{R}^m$ has all partial derivatives $\frac{\partial f_i}{\partial x_j}$ at $\mathbf{x} \in \mathbb{R}^n$. Must f be differentiable at \mathbf{x} ?

(e) State the Chain Rule for differentiable functions $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^k$. If f is invertible and f^{-1} is differentiable at $\mathbf{y} = f(\mathbf{x})$, what is $Df^{-1}(\mathbf{y})$?

MATHM212

END OF PAPER

ĩ

ł