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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this ezamination.

1. Let f be a differentiable function on the open disc D(0, R) of centre 0 and radius
R.

Show

(i) If f'(z) = 0 for all z € D(0,R), then f is constant on D(0, R).
(ii) If |f| is constant on D(0, R), then f is constant on D(0, R).
(iii) If | f(2)] < |£(0)| for all z € D(0, R), then f is constant on D(0, R).

2. Define
b 2™ ] ad (_l)nz2n+1
expz = Z;ﬁ" smz-;_o Gn 1)1
( l)n 2n
cosz = Z , ze€C.
rd (2n!)
Show

(i) expz #0, VzeC
(ii) exp(a + b) =expaexpb, Va,beC

(iii)
cosz = l(ei” + e7%)
2
sinz = —l—(eiz —e™%)
21

(iv) cos(a+b) = cosacosb —sinasinb, Va,b e C.

(v) If sinz =0, then z = km, where k is an integer.
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3. State and prove Cauchy’s Theorem for a triangle.

Let v : {v(8) = €%,0 < 6 < 27} be the circle, centre 0 radius 1, taken in the
anticlockwise direction. Evaluate f7 f(z)dz when f(z) is

(1) sizllz’
(i) 257

(iif) 425%™+

(iv) wioe

4. (i) State and prove Taylor’s Theorem.

(ii) If f is holomorphic on C and f is not identically zero, show that the zeros of
f are isolated, i.e. if f(a) = 0 then there exists § > 0 such that f(z) # 0 if
0<l|z—a|<é.

(iii) Let f, g, h be holomorphic on C with f (3) = 22, 9 (557) = (21;11)2, h(%) =
CO® = 1,2,.... Show that f, g exist but h does not.

ne

5. (i) Find the Laurent expansion of (z +1)72(z — 1)72 about the point —1 valid for
(a) |z+1] <2, |
(b) |z+1] > 2.

(ii) Given that [;° e *dz = %—7—’, show that [ sin(z?)dz = /3.

ces o0 cosx
(iii) Evaluate [;~ #2%dz.

6. (i) Let v be a simple closed contour and f, g be holomorphic on and inside v. If
|f(2)] > |g9(2)], for all z € v, show that f and f + g have the same number of
zeros inside . Hence, or otherwise, deduce that any polynomial of degree n
has n roots.

(ii) Evaluate

= 1
nzz_:oo (2n+1)(5n+2)’
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