UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

5

Mathematics M211: Analysis 3: Complex Analysis

COURSE CODE	: MATHM211	
UNIT VALUE	: 0.50	
DATE	: 22-MAY-03	
TIME	: 14.30	
TIME ALLOWED	: 2 Hours	

03-C0948-3-150 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

- (i) Let P(z) = a_nzⁿ + a_{n-1}zⁿ⁻¹ + ... + a₀ be a non-constant polynomial with complex coefficients a₀, ..., a_n, n ≥ 1. Show that P has at least one root in the complex plane. (Any results used must be clearly stated).
 - (ii) If $a_0, ..., a_n$ are real and P(w) = 0, show that $P(\bar{w}) = 0$, where \bar{w} is the complex conjugate of w. Is the same result necessarily true if $a_0, ..., a_n$ are complex numbers?

2. (i) Let

1

$$S = \{z : z = x + iy, xy > 1\}$$

$$T = \{z : z = x + iy, xy = 1\}.$$

Show that S is an open subset of \mathbb{C} and T is a closed subset of \mathbb{C} .

(ii) Let $\{C_n\}_{n=1}^{\infty}$ be a nested sequence of non-empty sets in \mathbb{C} i.e. $C_n \supset C_{n+1}$ for n = 1, 2, ...

Decide, with justification, whether it is always true that $\bigcap_{n=1}^{\infty} C_n \neq \phi$:

- a) When each C_n is compact.
- b) When each C_n is closed.
- c) When each C_n is open.
- 3. (i) Let f be a differentiable function on the complex plane \mathbb{C} with $f'(z) = 0, \ \forall z \in \mathbb{C}$. Show that f is constant on \mathbb{C} .
 - (ii) Show that $\frac{d}{dz}(\exp z) = \exp z, \ \forall z \in \mathbb{C}.$
 - (iii) Show that $\exp z \neq 0, \forall z \in \mathbb{C}$.
 - (iv) Let f be a differitable complex valued function on the real interval [0, 1]. Decide, with justification, if there always exists $c \in (0, 1)$ with

$$f(1) - f(0) = f'(c).$$

MATHM211

PLEASE TURN OVER

- 4. (i) State and prove Taylor's theorem.
 - (ii) Find the Laurent expansion about 0 of the function $(4z^2 + 8z + 3)^{-1}$ valid
 - a) for $\frac{1}{2} < |z| < \frac{3}{2}$. b) for $|z| > \frac{3}{2}$.
- 5. (i) State and prove Cauchy's Integral formula for a convex contour.
 - (ii) Let C denote the boundary of the square with vertices $\pm 3 \pm 3i$ taken in the anticlockwise direction. Evaluate

a)
$$\int_C \frac{\sin z}{z(z^2+1)} dz.$$

b)
$$\int_C \frac{\cos z}{z^5} dz.$$

- 6. (i) State and prove Jordan's lemma.
 - (ii) Evaluate $\int_0^\infty \frac{x \sin x}{x^2 + 1} dx$.
 - (iii) By integrating $\frac{\pi \operatorname{cosec} \pi z}{(2z+1)(2z-5)}$ around a suitable contour, evaluate

$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{(2n+1)(2n-5)}.$$

MATHM211

END OF PAPER

4107