UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٩

1

Mathematics M11B: Analysis 2

COURSE CODE	:	MATHM11B
UNIT VALUE	:	0.50
DATE	:	09-MAY-06
ТІМЕ	:	14.30
TIME ALLOWED	:	2 Hours

06-C1035-3-210 © 2006 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- (a) What does it mean to say that a function f at is differentiable at a?
 Suppose f(x) = x² sin 1/x for x ≠ 0, f(0) = 0.
 Show that f is differentiable at 0. Is f' continuous at 0? (Justify your answer.)
 - (b) State the Chain Rule. Differentiate the following functions, with respect to x:
 - (i) $\exp(x^2)$,
 - (ii) $\cos(\sin(x^3))$,
 - (iii) x^x .

ţ

2. Suppose f is continuous and strictly increasing on [a,b]. Let $y \in (f(a), f(b))$ and let $x = f^{-1}(y)$. Then, if f is differentiable at x and $f'(x) \neq 0$, prove that f^{-1} is differentiable at y and

$$(f^{-1})'(y) = \frac{1}{f'(x)}.$$

(You may assume that f^{-1} is continuous at y.)

If $g(x) = \sin^{-1}(\cos 2x)$, show that g'(x) is equal to a constant for $x \in (0, \pi/2)$ and equal to another constant for $x \in (-\pi/2, 0)$.

Sketch the graph of $y = \sin^{-1}(\cos 2x), -\pi/2 \le x \le \pi/2$.

- 3. (a) State Cauchy's Mean Value Theorem and use it to prove L'Hôpital's Rule.
 - (b) Evaluate the following limits:

(i)
$$\frac{1-\cos x}{x^2} \text{ as } x \to 0,$$

(ii)
$$\frac{1}{x} - \frac{1}{\sin x} \text{ as } x \to 0,$$

(iii)
$$\frac{\log(1+x)}{x} \text{ as } x \to 0,$$

(iv)
$$\left(1 + \frac{1}{x}\right)^x \text{ as } x \to \infty,$$

MATHM11B

PLEASE TURN OVER

 State Rolle's Theorem. Prove the Mean Value Theorem. (You may assume Rolle's Theorem.)

Suppose

- (a) f(x) = x has a root α (that is, $f(\alpha) = \alpha$),
- (b) $f'(\alpha) = 0$,
- (c) $|f''(x)| \leq K$ for some K in a closed interval $[\alpha h, \alpha + h]$, for some h > 0,

Show that, if x_0 is sufficiently close to α , then $|\alpha - f(x_0)| < K|\alpha - x_0|^2$. Use Newton's Method to find a better approximation than 50 to $\sqrt{2501}$.

5. Suppose f is a bounded function on an interval [a, b]. Define the Upper Riemann Sum, U(P, f), and the Lower Riemann Sum, L(P, f), where P is a partition:

$$a = x_0 < x_1 < \cdots < x_n = b.$$

What is meant by a refinement of P? If P^* is a refinement of P show that $L(P, f) \leq L(P^*, f)$ and $U(P, f) \geq U(P^*, f)$.

Hence show that if P and P' are partitions of [a, b] then $L(P, f) \leq U(P', f)$. Suppose P(n) are partitions of [a, b], where b > 0, of the form $x_r = ah^r$, $r = 0, \ldots, n$, $ah^n = b$.

Write down $U(P(n), x^2)$ and show directly (that is, without using the fact that x^2 is Riemann integrable) that as $n \to \infty$, $U(P(n), x^2) \to (b^3 - a^3)/3$.

6. State and prove the Integral Test for series. Find the limit of

$$\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$$

as $n \to \infty$.

MATHM11B

END OF PAPER

\$