UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)M.Sci.

Mathematics M11B: Analysis 2

COURSE CODE : MATHM11B

UNIT VALUE : 0.50

DATE : 17-MAY-05
time
: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Suppose f is defined on an open interval containing a. Give a definition for f to be continuous at a. Give a definition for f to be differentiable at a. Show that, if f is differentiable at a, f must be continuous at a.
(b) If f is defined on \mathbb{R} and $|f(x)-f(y)| \leqslant|x-y|^{2}$ for all real x and y, show that f must be constant.
(c) Suppose f is defined on $\mathbb{R}, f(x)=1$ when $x \neq 0$ and $f(0)=0$. Is there a function $F(x)$ with the property that $F^{\prime}(x)=f(x)$ for all real x ? (Justify your answer.)
2. What is meant by the radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$? Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\ell$, where $0<\ell<\infty$. Show that $\sum_{n=0}^{\infty} a_{n} x^{n}$ has radius of convergence $\frac{1}{\ell}$. Find the radius of convergence of the following series:
(a) $x+2 x^{2}+3 x^{3}+\cdots+n x^{n}+\cdots$
(b) $x+4 x^{2}+27 x^{3}+16 x^{4}+\cdots+(2 n)^{2} x^{2 n}+(2 n+1)^{3} x^{2 n+1}+\cdots$
(c) $1+3 x+5^{2} x^{2}+3^{3} x^{3}+\cdots+5^{2 n} x^{2 n}+3^{2 n+1} x^{2 n+1}+\cdots$
3. (a) State and prove Cauchy's Mean Value Theorem (you may assume Rolle's Theorem).
(b) State L'Hôpital's Rule. Use L'Hôpital's Rule to evaluate the following limits:
(i) $\frac{\cos \frac{\pi}{2} x}{x^{2}-1}$ as $x \rightarrow 1$,
(ii) $\frac{\log (4-x)}{\left(x^{2}-9\right)^{1 / 2}}$ as $x \rightarrow 3$ from above,
(iii) $\frac{\left(x-\frac{\pi}{2}\right)^{4}}{\cos ^{2} x-\cot ^{2} x}$ as $x \rightarrow \frac{\pi}{2}$.
4. (a) State and prove Taylor's Theorem, giving the Cauchy and the Lagrange form of the remainder.
(b) Find the series expansion of the following:
(i) $\log (1+x)$,
(ii) $\log \left(1+x^{2}\right)$,
(iii) $\log \left(1+x+x^{2}+x^{3}\right)$.
5. (a) What is meant by a partition P of a closed interval $[a, b]$? Suppose f is a bounded function on $[a, b]$. Define the Upper Riemann Sum, $U(P, f)$, and the Lower Riemann Sum, $L(P, f)$. What does it mean to say that f is Riemann Integrable?
(b) Show that if f is monotonic it is Riemann Integrable (You may use a general Theorem. If you do, you must quote it clearly.)
6. State and prove the Fundamental Theorem of Calculus. (You may use a general Theorem. If you do, you must quote it clearly.)
Find $G^{\prime}(x)$ in each of the following cases:
(a) $G(x)=\int_{1}^{x} \frac{1}{\exp (t)+1} d t$,
(b) $G(x)=\int_{x}^{x^{2}} \frac{1}{\exp (t)+1} d t$,
(c) $G(x)=\int_{1}^{\int_{1}^{x} \frac{1}{\exp (t)+1} d t} \frac{1}{\exp (t)+1} d t$.
