EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:B.Sc. M.Sci.

Mathematics M11B: Analysis 2

COURSE CODE : MATHM11B

UNIT VALUE : 0.50

DATE : 17-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

1. (i) Define the derivative $f^{\prime}(a)$ of a function $f(x)$ at the point a. If f and g are differentiable at a, with $f^{\prime}(a) \neq 0$, show that $f+g$ and $\frac{1}{f}$ are also differentiable at a with

$$
\begin{aligned}
& (f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a) \\
& \left(\frac{1}{f}\right)^{\prime}(a)=-\frac{f^{\prime}(a)}{\left(f(a)^{2}\right.}
\end{aligned}
$$

(ii) If $f(x)=x^{\frac{p}{q}}, x>0, p, q$ positive integers, show that $f^{\prime}(x)=\frac{p}{q} x^{\frac{p}{q}-1}$.
2. (i) State and prove Rolle's theorem and state and deduce the Mean Value Theorem.
(ii) Evaluate
a)

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

b)

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin ^{3} x-\operatorname{cosec}^{3} x}{\left(x-\frac{\pi}{2}\right)^{2}}
$$

3. (i) Let f be a bounded function on $[a, b]$. Define the upper Riemann integral $\bar{\int}_{a}^{b} f(x) d x$ and the lower Riemann integral $\int_{a}^{b} f(x) d x$ and show that

$$
\underline{\int}_{a}^{b} f(x) d x \leqslant \bar{\int}_{a}^{b} f(x) d x
$$

Give an example to show that there is not always equality.
(ii) Show that if f is a strictly decreasing function on $[a, b]$ then f is Riemann integrable on $[a, b]$.
4. (i) State and prove Taylor's theorem with the Cauchy form of the remainder.
(ii) If f and g are two polynomials such that $f^{(j)}(0)=g^{(j)}(0)\left(j^{\text {th }}\right.$ derivatives at 0$)$ for $j=0,1,2, \ldots$, prove that $f(x)=g(x)$ for all x.
(iii) Give an example to show that (ii) is not always true when f and g are two infinitely differentiable functions.
5. (i) State and prove the fundamental theorem of calculus.
(ii) Evaluate

$$
\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}
$$

(iii) Evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{3} x d x}{\sqrt{1+\sin x}}
$$

6. (i) Let f, g be differentiable functions on $[a, b]$. Show that F, defined by $F(x)=f(x) g(x)$, is also differentiable on $[a, b]$. Show further that

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

(ii) Evaluate

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta d \theta
$$

(iii) Evaluate

$$
\int_{1}^{2}(\log x)^{2} d x
$$

