EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)M.Sci.

Mathematics M11B: Analysis 2

COURSE CODE	$:$ MATHM11B
UNIT VALUE	$: \mathbf{0 . 5 0}$
DATE	$: \mathbf{2 1 - M A Y - 0 3}$
TIME	$: \mathbf{1 4 . 3 0}$
TIME ALLOWED	$: \mathbf{2 ~ H o u r s ~}$

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

1. Let f, g be functions defined on (a, b), both of which are differentiable at a point $c \in(a, b)$.
(i) Show that $(f g)^{\prime}(c)=f(c) g^{\prime}(c)+f^{\prime}(c) g(c)$.
(ii) If also $g(c) \neq 0$, show that

$$
(f / g)^{\prime}(c)=\frac{f^{\prime}(c)}{g(c)}-\frac{f(c) g^{\prime}(c)}{(g(c))^{2}}
$$

Let

$$
\begin{aligned}
& h(\theta)=\frac{\sin \theta}{\theta}, \theta \neq 0 \\
& h(0)=1
\end{aligned}
$$

Show that h is differentiable at 0 . Is $h^{\prime}(\theta)$ continuous at 0 ?
2. Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence R.
(i) Show that $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ also has radius of convergence R.
(ii) Show that $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1},|x|<R$.
3. (i) State and prove Rolle's Theorem.
(ii) If f is a differentiable function on (a, b) and $f^{\prime}(x)>0, \forall x \in(a, b)$, show that f is strictly increasing on (a, b). If g is a differentiable function which is strictly increasing on (a, b), must $g^{\prime}(x)$ be positive $\forall x \epsilon(a, b)$? Justify your answer!
(iii) If f is a differentiable function on (a, b) and $m=\inf _{x \in(a, b)} f^{\prime}(x), M=\sup _{x \in(a, b)} f^{\prime}(x)$ show that for any number λ, with $m<\lambda<M$, there exists $c \in(a, b)$ with $f^{\prime}(c)=\lambda$.
4. (i) Let f be a continuous function on $[a, b]$. Show that f is uniformly continuous on $[a, b]$, i.e. given $\varepsilon>0, \exists \delta>0$ such that $|f(x)-f(y)|<\varepsilon$ if $x, y \in[a, b]$ and $|x-y|<\delta$.

Deduce that f is Riemann integrable on $[a, b]$.
(ii) Let S_{10} denote the estimate for $\int_{0}^{1} \sin \left(x^{2}\right) d x$ obtained by using Simpson's rule with $[0,1]$ divided into 10 equal intervals. Show that

$$
\left|\int_{0}^{1} \sin \left(x^{2}\right) d x-S_{10}\right|<10^{-4}
$$

5. Let f and g be Riemann integrable functions on $[a, b]$. Show that
(i) $f+g$;
(ii) f^{2};
(iii) $f g$;
are Riemann integrable on $[a, b]$. (Any theorems used must be clearly stated).
Evaluate $\int_{0}^{\frac{\pi}{2}} x \cos ^{2} x d x$.
6. (i) Let x_{1}, \ldots, x_{n} and $y_{1}, \ldots . y_{n}$ be real numbers. Show that

$$
\sum_{i=1}^{n} x_{i} y_{i} \leqslant\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

(ii) If f is Riemann integrable on $[a, b]$ and $\int_{a}^{b}(f(x))^{2} d x=0$, show that $\int_{a}^{b} f(x) d x=0$.
(iii) Show that if f and g are Riemann integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) g(x) d x \leqslant\left(\int_{a}^{b}(f(x))^{2} d x\right)^{1 / 2}\left(\int_{a}^{b}(g(x))^{2} d x\right)^{1 / 2}
$$

