UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
B.SC.
M.Sci.

Mathematics M11B: Analysis 2

COURSE CODE : MATHM11B

UNIT VALUE : 0.50

DATE : 10-MAY-02

TIME : $\mathbf{1 4 . 3 0}$

TIME ALLOWED : 2 hours

02-C0935-3-170
© 2002 University of London

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

1. (i) Let f be defined on an open interval containing the point a. Define what it means for f to be differentiable at a.
(ii) If

$$
\begin{aligned}
& f(x)=x \cos \frac{1}{x}, \quad x \neq 0 \\
& f(0)=0,
\end{aligned}
$$

show that f is continuous at 0 but not differentiable at 0 .
(iii) Let f, g be defined in an open interval containing a. If $h(x)=f(x) g(x)$ is differentiable at a, give an example in which f is differentiable at a but g is not.
2. (i) State and prove L'Hopital's rule.
(ii) Evaluate

$$
\lim _{x \rightarrow 0} \frac{x^{5}}{\sin ^{3} x-\tan ^{3} x}
$$

(iii) If $f(x)=\sum_{n=1}^{\infty} x^{n} \cos \frac{\pi}{n}$, evaluate $\lim _{h \rightarrow 0} \frac{f(h)-f(-h)}{h}$.
3. (i) Prove Newton's method for iterative processes, i.e. Let g be a twice differentiable function on $[\alpha-h, \alpha+h]$ where $h>0$ and $g(\alpha)=0$. Suppose also that there exists $M, 0 \leqslant M<1$ with $\left|\frac{g^{\prime \prime}(x) g(x)}{\left(g^{\prime}(x)\right)^{2}}\right| \leqslant M$,
$\forall x \in[\alpha-h, \alpha+h]$. Then, if $x_{1} \in[\alpha-h, \alpha+h]$ and
$x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}, n=1,2, \cdots$, show that $x_{n} \rightarrow \alpha$ as $n \rightarrow \infty$.
(ii) By choosing x_{1} with $1.4<x_{1}<1.5$, show that, if $g(x)=x^{2}-2$ and $x_{n+1}=x_{n}-\frac{\left(x_{n}^{2}-2\right)}{2 x_{n}}$, then $x_{n} \rightarrow \sqrt{2}$ as $n \rightarrow \infty$.
4. Let f be a bounded function on $[a, b], a<b$.
(i) Define the upper Riemann integral $\bar{\int}_{a}^{b} f(x) d x$ and the lower Riemann integral $\underline{\int}_{a}^{b} f(x) d x$ and show that

$$
\int_{a}^{b} f(x) d x \leqslant \bar{\int}_{a}^{b} f(x) d x
$$

(ii) Show that if f is continuous on $[a, b], a<b$, then f is Riemann integrable on $[a, b]$. Find an example of a function g which is not continuous on $[a, b]$ but which, nevertheless, is Riemann integrable on $[a, b]$.
5. Let $\left\{G_{\alpha}\right\}_{\alpha \in A}$ be a collection of intervals whose union covers the interval I.
(i) If all the G_{α} are open intervals and I is a closed interval, show that there exists a finite subcollection of $\left\{G_{\alpha}\right\}_{\alpha \in A}$ whose union covers I.
(ii) If all the G_{α} are open intervals and I is an open interval, does there always exist a finite subcollection of $\left\{G_{\alpha}\right\}_{\alpha \in A}$ whose union covers I ?
(iii) If all the G_{α} are closed intervals and I is a closed interval, does there always exist a finite subcollection of $\left\{G_{\alpha}\right\}_{\alpha \in A}$ whose union covers I ?
6. (i) Let f be defined and continuous on $[a, b]$. If $\int_{a}^{b} f(x) d x$ exists and $x=g(t)$ with (α) $a=g(c), b=g(d), g(t) \in[a, b]$ for $t \in[c, d]$,
(β) $g^{\prime}(t)$ exists and is continuous in $[c, d]$.
Show that

$$
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(t)) g^{\prime}(t) d t
$$

(ii) Evaluate

$$
\int_{a}^{b} \frac{x^{2} d x}{\sqrt{1-x^{3}}}, 0<a<b<1
$$

(iii) Evaluate

$$
\int_{0}^{\frac{\pi}{3}} \frac{\sin ^{3} x}{\sqrt{\cos x}} d x
$$

