University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

```
B.Sc. M.Sci.
```

Mathematics M11A: Analysis 1
COURSE CODE : MATHM11A

UNIT VALUE $\quad \mathbf{0 . 5 0}$

DATE : 05-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. What does it mean to say that a sequence $\left(x_{n}\right)$ converges to a limit L ?

Let (x_{n}) be an increasing sequence that is bounded above: prove that (x_{n}) converges. State and prove the Bolzano-Weierstrass Theorem. (You may assume an analogue of the second part of the question, for decreasing sequences.)
2. You are given the following fact: if $\left(x_{k}\right)_{0}^{\infty}$ is a sequence converging to s then

$$
\frac{1}{n} \sum_{k=0}^{n-1} x_{k} \rightarrow s \quad \text { as } n \rightarrow \infty
$$

Let the sequence $\left(x_{n}\right)$ be defined inductively by

$$
\begin{aligned}
& x_{0}=0 \\
& x_{n}=1+\frac{1}{n} \sum_{k=0}^{n-1} x_{k} \quad \text { for } n \geqslant 1 .
\end{aligned}
$$

Prove that the sequence does not converge.
Calculate the first few terms of the sequence. By considering the successive differences $x_{n}-x_{n-1}$, of the terms you have calculated, guess a formula for the general term x_{n}.
Use the inductive definition to show that

$$
n x_{n}-(n-1) x_{n-1}=x_{n-1}+1
$$

and hence confirm your guess.
3. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

converges is $s>1$.
For which real values of x does the following series converge?

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}
$$

Justify your answer carefully.
[You may assume standard convergence tests provided that you state them clearly.]
4. For the purposes of this question you may assume that

$$
\begin{equation*}
\log x \leqslant x-1 \quad \text { for every } x>0 \tag{1}
\end{equation*}
$$

Use inequality (1) to prove that

$$
\log x \geqslant 1-\frac{1}{x} \text { for every } x>0
$$

Show that for each natural number n

$$
0 \leqslant \frac{1}{n}-\log \left(1+\frac{1}{n}\right) \leqslant \frac{1}{n(n+1)}
$$

Deduce that the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\log \left(1+\frac{1}{n}\right)\right)
$$

converges and that the sum is at most 1 .
Show that the sequence whose $m^{\text {th }}$ term is

$$
\left(\sum_{n=1}^{m} \frac{1}{n}\right)-\log (m+1)
$$

converges to a number between 0 and 1 .
5. State and prove the Cauchy-Schwarz inequality.

Let $\left(x_{k}\right)_{1}^{n}$ be a finite sequence of positive numbers. Show that

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{x_{k}}\right)^{-1} \leqslant \frac{1}{n} \sum_{k=1}^{n} x_{k} \tag{2}
\end{equation*}
$$

Assuming the AM/GM inequality,

$$
\left(\prod_{k=1}^{n} a_{k}\right)^{1 / n} \leqslant \frac{1}{n} \sum_{k=1}^{n} a_{k}
$$

for positive numbers, show that the geometric mean

$$
\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}
$$

lies between the two expressions in inequality (2).
6. What does it mean to say that a real function defined on \mathbf{R} is continuous?

State and prove the intermediate value theorem for a continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$.
Let $p: \mathbf{R} \rightarrow \mathbf{R}$ be the polynomial given by

$$
p(x)=x^{3}+x-1
$$

Prove that there is a real number t with $p(t)=0$.

