UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. B.Sc.(Econ)M.Sci.

P

Mathematics M11A: Analysis 1

COURSE CODE	: MATHM11A
UNIT VALUE	: 0.50
DATE	: 12-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) State and prove the Cauchy-Schwarz inequality.
 - (b) Prove that for real numbers a_1, \ldots, a_n and b_1, \ldots, b_n ,

$$\left(\sum_{i=1}^{n} (a_i + b_i)^2\right)^{1/2} \leqslant \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}.$$

(c) Suppose that a_1, \ldots, a_n are real numbers, and that p_1, \ldots, p_n are nonnegative real numbers with $\sum_{i=1}^n p_i = 1$. Prove that

$$\sum_{i=1}^n p_i a_i \leqslant \left(\sum_{i=1}^n p_i a_i^2\right)^{1/2}.$$

- 2. (a) Define what it means for a sequence $(x_n)_{n=1}^{\infty}$ to be a Cauchy sequence.
 - (b) Suppose that $|x_{n+1} x_n| \to 0$ as $n \to \infty$. Must $(x_n)_{n=1}^{\infty}$ be a Cauchy sequence?
 - (c) State the Bolzano-Weierstrass Theorem.
 - (d) State and prove the General Principle of Convergence.
- 3. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_n$ to be convergent.
 - (b) State the Ratio Test for series.
 - (c) State and prove the Comparison Test for series.
 - (d) For each of the following series, determine whether or not it converges:

$$\sum_{n=1}^{\infty} \frac{n^{2005}}{2^n}, \qquad \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{3^n}, \qquad \sum_{n=3}^{\infty} \frac{2005n}{(n+1)^3 \log n}$$

[You may assume that $\sum_{n=1}^{\infty} 1/n^2$ converges.]

MATHM11A

5

PLEASE TURN OVER

- 4. (a) Define $\exp(x)$ for a real number x by giving a power series.
 - (b) Define what it means for $\sum_{n=1}^{\infty} x_n$ to converge absolutely.
 - (c) Prove that the series for exp(x) converges absolutely.
 - (d) Prove that if $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are absolutely convergent series then

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \left(\sum_{n=0}^{\infty} c_n\right),$$

where $c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0$. [You may assume that any rearrangement of an absolutely convergent series converges to the same sum.]

(e) Prove that if x and y are real numbers then $\exp(x + y) = \exp(x)\exp(y)$. [You may use a general theorem about multiplication of series, provided that you state it carefully.]

- 5. (a) Define what it means to say that a function f is continuous at c.
 - (b) State and prove the Intermediate Value Theorem.
 - (c) Suppose that f and g are continuous real functions on [0, 1] such that

$$f(0) + f(1) = g(0) + g(1).$$

Prove that there is some $x \in [0, 1]$ with f(x) = g(x).

6. (a) Prove that a continuous function f on a closed interval [a, b] is bounded.
(b) Prove that if f is continuous on [a, b] and

$$M = \sup\{f(x) : x \in [a,b]\}$$

then there is $x \in [a, b]$ with f(x) = M.

(c) Suppose that f is continuous on (0, 1), and

$$M = \sup\{f(x) : x \in (0,1)\}.$$

Must there be $x \in (0, 1)$ with f(x) = M?

MATHM11A

END OF PAPER

1