University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. B.Sc.(Econ)M.Sci.

Mathematics M11A: Analysis 1

COURSE CODE : MATHM11A

UNIT VALUE : 0.50

DATE : 12-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State and prove the Cauchy-Schwarz inequality.
(b) Prove that for real numbers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n},

$$
\left(\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{2}\right)^{1 / 2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}+\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}
$$

(c) Suppose that a_{1}, \ldots, a_{n} are real numbers, and that p_{1}, \ldots, p_{n} are nonnegative real numbers with $\sum_{i=1}^{n} p_{i}=1$. Prove that

$$
\sum_{i=1}^{n} p_{i} a_{i} \leqslant\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}\right)^{1 / 2}
$$

2. (a) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ to be a Cauchy sequence.
(b) Suppose that $\left|x_{n+1}-x_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Must $\left(x_{n}\right)_{n=1}^{\infty}$ be a Cauchy sequence?
(c) State the Bolzano-Weierstrass Theorem.
(d) State and prove the General Principle of Convergence.
3. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_{n}$ to be convergent.
(b) State the Ratio Test for series.
(c) State and prove the Comparison Test for series.
(d) For each of the following series, determine whether or not it converges:

$$
\sum_{n=1}^{\infty} \frac{n^{2005}}{2^{n}}, \quad \sum_{n=1}^{\infty} \frac{\binom{2 n}{n}}{3^{n}}, \quad \quad \sum_{n=3}^{\infty} \frac{2005 n}{(n+1)^{3} \log n}
$$

[You may assume that $\sum_{n=1}^{\infty} 1 / n^{2}$ converges.]
4. (a) Define $\exp (x)$ for a real number x by giving a power series.
(b) Define what it means for $\sum_{n=1}^{\infty} x_{n}$ to converge absolutely.
(c) Prove that the series for $\exp (x)$ converges absolutely.
(d) Prove that if $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ are absolutely convergent series then

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=\left(\sum_{n=0}^{\infty} c_{n}\right)
$$

where $c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}$. [You may assume that any rearrangement of an absolutely convergent series converges to the same sum.]
(e) Prove that if x and y are real numbers then $\exp (x+y)=\exp (x) \exp (y)$. [You may use a general theorem about multiplication of series, provided that you state it carefully.]
5. (a) Define what it means to say that a function f is continuous at c.
(b) State and prove the Intermediate Value Theorem.
(c) Suppose that f and g are continuous real functions on $[0,1]$ such that

$$
f(0)+f(1)=g(0)+g(1)
$$

Prove that there is some $x \in[0,1]$ with $f(x)=g(x)$.
6. (a) Prove that a continuous function f on a closed interval $[a, b]$ is bounded.
(b) Prove that if f is continuous on $[a, b]$ and

$$
M=\sup \{f(x): x \in[a, b]\}
$$

then there is $x \in[a, b]$ with $f(x)=M$.
(c) Suppose that f is continuous on $(0,1)$, and

$$
M=\sup \{f(x): x \in(0,1)\} .
$$

Must there be $x \in(0,1)$ with $f(x)=M$?

