University of London

# EXAMINATION FOR INTERNAL STUDENTS 

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M11A: Analysis 1

COURSE CODE : MATHM11A

UNIT VALUE : 0.50

DATE : 04-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ to converge to a limit $a$ as $n \rightarrow \infty$.
(b) Prove that if $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$ as $n \rightarrow \infty$ then $x_{n} y_{n} \rightarrow a b$ as $n \rightarrow \infty$.
(c) Prove that if $|r|<1$ then $r^{n} \rightarrow 0$ as $n \rightarrow \infty$.
(d) Determine the limit as $n \rightarrow \infty$ of

$$
\frac{(2 n+1)^{2004}(2 n-1)^{2004}}{\left(2 n^{2}+1\right)^{2004}}
$$

2. (a) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ to be a Cauchy sequence.
(b) State the Bolzano-Weierstrass Theorem.
(c) State and prove the General Principle of Convergence.
3. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_{n}$ to be convergent.
(b) State and prove the Comparison Test for series.
(c) State the Ratio Test for series.
(d) For each of the following series, determine whether or not it converges:

$$
\sum_{n=1}^{\infty} \frac{2004^{n}}{n!}, \quad \sum_{n=1}^{\infty} \frac{n^{2002}}{(n+1)^{2004}}, \quad \quad \sum_{n=1}^{\infty} \frac{(n+1)(2 n+1)}{n^{3}}
$$

[You may assume that $\sum_{n=1}^{\infty} 1 / n^{2}$ converges and $\sum_{n=1}^{\infty} 1 / n$ diverges.]
4. (a) Define $\exp (x)$ for a real number $x$ by giving a power series.
(b) Define what it means for $\sum_{n=1}^{\infty} x_{n}$ to converge absolutely.
(c) Prove that the series for $\exp (x)$ converges absolutely.
(d) Prove that if $x$ and $y$ are real numbers then $\exp (x+y)=\exp (x) \exp (y)$. [You may use a general theorem about multiplication of series, provided that you state it carefully.]
(e) Prove that $1+x \leqslant \exp (x)$ for all real $x$.
(f) Prove that if $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of positive real numbers then the sequence $\left(b_{n}\right)_{n=1}^{\infty}$ defined by $b_{n}=\prod_{k=1}^{n}\left(1+a_{k}\right)$ is convergent. [Hint: Use (e) to show that $\left(b_{n}\right)_{n=1}^{\infty}$ is increasing and bounded above.]
5. (a) Define what it means to say that a function $f(x)$ is continuous at $x=c$.
(b) State and prove the Intermediate Value Theorem.
(c) Prove that the equation

$$
\cos (x)=x \sin (x)
$$

has infinitely many real solutions. [You may assume standard properties of cos and $\sin$.]
6. (a) Define what it means for a function $f$ to be convex on an interval $I$.
(b) State and prove Jensen's Inequality for convex functions.
(c) State and prove the Arithmetic Mean/Geometric Mean inequality. [You may assume that $-\log x$ is convex.]
(d) Prove that if $p_{1}, \ldots, p_{n}$ are positive real numbers with $\sum_{i=1}^{n} p_{i}=1$ then

$$
\sum_{i=1}^{n} p_{i} \log \left(1 / p_{i}\right) \leqslant \log n
$$

