UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

4

Mathematics M11A: Analysis 1

COURSE CODE	: MATHM11A
UNIT VALUE	: 0.50
DATE	: 19-MAY-03
TIME	: 14.30
TIME ALLOWED	: 2 Hours

03-C0939-3-200 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Define what it means for a sequence $(x_n)_{n=1}^{\infty}$ to converge to a limit a.
 - (b) Prove that if $x_n \to a$ and $y_n \to b$ as $n \to \infty$ then $x_n + y_n \to a + b$ as $n \to \infty$.
 - (c) Prove that if $x_n \to a$ and $y_n \to b$ as $n \to \infty$ then $x_n y_n \to ab$ as $n \to \infty$.
 - (d) Determine

$$\lim_{n \to \infty} \frac{(n+1)^{2003} + (n+2)^{2003}}{n^{2003}}.$$

- 2. (a) Define what it means for a sequence $(x_n)_{n=1}^{\infty}$ to be a Cauchy sequence.
 - (b) State the Bolzano-Weierstrass Theorem.
 - (c) State and prove the General Principle of Convergence.
- 3. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_n$ to be convergent.
 - (b) State and prove the Comparison Test for series.
 - (c) Prove that if $\sum_{n=1}^{\infty} x_n$ is a divergent series of nonnegative real numbers and $y_n \ge x_n$ for every *n* then $\sum_{n=1}^{\infty} y_n$ diverges.
 - (d) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
 - (e) Investigate the convergence of the series

$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}.$$

- 4. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_n$ to converge absolutely.
 - (b) Define $\exp(x)$ for a real number x by giving a series.
 - (c) State the Ratio Test for series.
 - (d) Prove that the series for $\exp(x)$ converges absolutely.
 - (e) Prove that if x and y are real numbers then $\exp(x + y) = \exp(x) \exp(y)$.

[You may use a general theorem about multiplication of series, provided that you state it carefully.]

MATHM11A

PLEASE TURN OVER

- 5. (a) Define what it means to say that a function f is continuous at c.
 - (b) State and prove the Intermediate Value Theorem.

(c) Suppose $f : [0,1] \to [0,1]$ is continuous. Must there be some $x \in [0,1]$ with f(x) = x?

- 6. (a) Define what it means for a function f to be convex on [a, b].
 - (b) State and prove Jensen's Inequality for convex functions.
 - (c) State and prove the AM/GM inequality. [You may assume that log(x) is concave.]
 - (d) Prove that, for $n \ge 1$,

$$n! \leqslant \left(\frac{n+1}{2}\right)^n.$$

MATHM11A

END OF PAPER