EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M11A: Analysis 1

COURSE CODE	$:$ MATHM11A
UNIT VALUE	$: 0.50$
DATE	$: 19-M A Y-03$
TIME	$: 14.30$
TIME ALLOWED	$: 2$ Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ to converge to a limit a.
(b) Prove that if $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$ as $n \rightarrow \infty$ then $x_{n}+y_{n} \rightarrow a+b$ as $n \rightarrow \infty$.
(c) Prove that if $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$ as $n \rightarrow \infty$ then $x_{n} y_{n} \rightarrow a b$ as $n \rightarrow \infty$.
(d) Determine

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{2003}+(n+2)^{2003}}{n^{2003}}
$$

2. (a) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ to be a Cauchy sequence.
(b) State the Bolzano-Weierstrass Theorem.
(c) State and prove the General Principle of Convergence.
3. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_{n}$ to be convergent.
(b) State and prove the Comparison Test for series.
(c) Prove that if $\sum_{n=1}^{\infty} x_{n}$ is a divergent series of nonnegative real numbers and $y_{n} \geqslant x_{n}$ for every n then $\sum_{n=1}^{\infty} y_{n}$ diverges.
(d) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(e) Investigate the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{(n+1)^{n}}{n^{n+1}}
$$

4. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_{n}$ to converge absolutely.
(b) Define $\exp (x)$ for a real number x by giving a series.
(c) State the Ratio Test for series.
(d) Prove that the series for $\exp (x)$ converges absolutely.
(e) Prove that if x and y are real numbers then $\exp (x+y)=\exp (x) \exp (y)$.
[You may use a general theorem about multiplication of series, provided that you state it carefully.]
5. (a) Define what it means to say that a function f is continuous at c.
(b) State and prove the Intermediate Value Theorem.
(c) Suppose $f:[0,1] \rightarrow[0,1]$ is continuous. Must there be some $x \in[0,1]$ with $f(x)=x$?
6. (a) Define what it means for a function f to be convex on $[a, b]$.
(b) State and prove Jensen's Inequality for convex functions.
(c) State and prove the AM/GM inequality. [You may assume that $\log (x)$ is concave.]
(d) Prove that, for $n \geqslant 1$,

$$
n!\leqslant\left(\frac{n+1}{2}\right)^{n}
$$

