EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-
B.SC.
M.Sci.

Mathematics M11A: Analysis 1

COURSE CODE	$:$ MATHM11A
UNIT VALUE	
DATE	$\mathbf{0 . 5 0}$
TIME	$\mathbf{0 2 - M A Y - 0 2}$
TIME ALLOWED	\cdot

02-C0934-3-190
(C) 2002 University of London

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State and prove the Cauchy-Schwarz inequality.
(b) Prove that, for real numbers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n},

$$
\left(\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)^{2}\right)^{1 / 2} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}+\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}
$$

(c) Prove that if a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are positive real numbers then

$$
\sum_{i=1}^{n} a_{i} b_{i} \leqslant\left(\sum_{i=1}^{n} a_{i}^{4 / 3}\right)^{3 / 4}\left(\sum_{i=1}^{n} b_{i}^{4}\right)^{1 / 4}
$$

[Hint: Write $a_{i} b_{i}$ as $a_{i}^{2 / 3} \cdot\left(a_{i}^{1 / 3} b_{i}\right)$]
2. (a) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ to converge to a limit a.
(b) Define what it means for a to be an upper bound for a set S of real numbers. Define what it means for a to be the least upper bound.
(c) State the Least Upper Bound Principle.
(d) Prove that an increasing sequence $\left(x_{n}\right)_{n=1}^{\infty}$ that is bounded above converges to a limit.
(e) State and prove the Bolzano-Weierstrass Theorem.
3. (a) Define what it means for a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ to be a Cauchy sequence.
(b) State the General Principle of Convergence.
(c) State and prove the Comparison Test for series.
(d) State the Ratio Test for series.
(e) For each of the following series, determine whether or not it converges:

$$
\sum_{n=1}^{\infty} \frac{3^{n}}{4^{n} n^{2}}, \quad \sum_{n=1}^{\infty} \frac{5^{n}(n!)^{2}}{(2 n)!}, \quad \quad \sum_{n=1}^{\infty} \frac{n!}{n^{n+2}}
$$

[You may assume that $\sum_{n=1}^{\infty} 1 / n^{2}$ converges.]
4. (a) Define $\exp (x)$ for a real number x by giving a power series.
(b) Define what it means for ries $\sum_{n=1}^{\infty} x_{n}$ to converge. Define what it means for $\sum_{n=1}^{\infty} x_{n}$ to c. nverge absolu y.
(c) Prove that the series for $\exp (x)$ converges absolutely.
(d) Prove that if x and y are real numbers then $\exp (x+y)=\exp (x) \exp (y)$.
[You may use a general theorem about multiplication of series, provided that you state it carefully.]
(e) Prove that, for $x \geqslant 0$,

$$
\exp (x) \geqslant 1+x+\frac{x^{2}}{2}
$$

and that, for $x \leqslant 0$,

$$
\exp (x) \leqslant 1+x+\frac{x^{2}}{2}
$$

[Hint: Consider the cases $x \leqslant-1$ and $-1<x \leqslant 0$ separately. Note that $1+x+x^{2} / 2$ is minimized at $x=-1$.]
5. (a) Define what it means to say that a function f is continuous at c.
(b) State and prove the Intermediate Value Theorem.
(c) Suppose f is a continuous real function such that $f(x)=f(x+2)$ for every real number x. Prove that there is a real number y such that $f(y)=f(y+1)$.
[Hint: Consider the function $g(x)=f(x)-f(x+1)$.]
6. (a) Prove that a continuous function f on a closed interval $[a, b]$ is bounded.
(b) Prove that if f is continuous on $[a, b]$ and

$$
M=\sup \{f(x): x \in[a, b]\}
$$

then there is $x \in[a, b]$ with $f(x)=M$.
(c) Suppose that f and g are continuous functions on $[a, b]$ such that $f(x)>0$ and $g(x)>0$ for every $x \in[a, b]$. Prove that there is a constant c such that $f(x) \leqslant c g(x)$ for every $x \in[a, b]$.

