University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C392: Algebraic Number Theory

COURSE CODE : MATHC392

UNIT VALUE : 0.50

DATE : 05-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Let k be an algebraic number field. Define $N(x)$ and $\operatorname{Tr}(x)$ for $x \in k$. Prove that $N(x), \operatorname{Tr}(x)$ are rational numbers.
(b) Express the following symmetric polynomial $f\left(X_{1}, X_{2}, X_{3}\right)$ in terms of the elementary symmetric polynomials:

$$
f\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1}^{2}+1\right)\left(X_{2}^{2}+1\right)\left(X_{3}^{2}+1\right)
$$

Let $k=\mathbb{Q}(\alpha)$, where α has minimal polynomial $m(X)=X^{3}+2 X^{2}+4 X+4$.
Calculate $N\left(\alpha^{2}+1\right)$ and $N\left(\alpha^{2}-1\right)$.
Determine whether $\alpha^{2}+1$ and $\alpha^{2}-1$ are irreducible in \mathfrak{o}_{k}.
2. (a) Prove that every algebraic number field has an integral basis.
(b) Describe an algorithm for finding an integral basis.
(c) Let $d \neq 1$ be a square-free integer and assume that $d \equiv 1 \bmod 4$.

Show that $\frac{1+\sqrt{d}}{2}$ is an algebraic integer.
Show that $\left\{1, \frac{1+\sqrt{d}}{2}\right\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
3. (a) Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree d, satisfying Eisenstein's criterion for the prime number p. For a zero α of f, define

$$
\theta=\frac{1}{p} \sum_{i=0}^{d-1} a_{i} \alpha^{i}, \quad a_{0}, \ldots, a_{d-1} \in\{0, \ldots, p-1\}
$$

Prove that if θ is an algebraic integer then $\theta=0$.
(b) Let p be a prime number and let $f(X)=X^{p}-p$. Let α be a zero of f.
(i) Calculate $\left|\Delta\left\{1, \alpha, \ldots, \alpha^{p-1}\right\}\right|$ in terms of p.
(ii) Hence show that $\left\{1, \alpha, \ldots, \alpha^{p-1}\right\}$ is an integral basis in $\mathbb{Q}(\alpha)$.
4. (a) Let \mathfrak{o} be the ring of algebraic integers in an algebraic number field k.

Define the norm $N(I)$ of a non-zero ideal I of \mathfrak{a}.
Prove that $N(I J)=N(I) N(J)$ for any two non-zero ideals $I, J \subseteq \mathfrak{o}$.
(b) Let $k=\mathbb{Q}(\alpha)$, where α has minimal polynomial $m(X)=X^{3}+4 X+2$.

Show that $\mathfrak{o}_{k}=\mathbb{Z}[\alpha]$.
Factorize (2), (3) and (5) into maximal ideals of \boldsymbol{o}_{k}.
Find the norm of each of the maximal ideals and show that they are all principal ideals.
5. Calculate the class group of the field $\mathbb{Q}(\sqrt{-33})$, giving a representative ideal for each ideal class and a multiplication table for the group.

