UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ŗ

3

Mathematics C392: Algebraic Number Theory

COURSE CODE	: MATHC392
UNIT VALUE	: 0.50
DATE	: 05-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Let k be an algebraic number field. Define N(x) and Tr(x) for $x \in k$. Prove that N(x), Tr(x) are rational numbers.
 - (b) Express the following symmetric polynomial $f(X_1, X_2, X_3)$ in terms of the elementary symmetric polynomials:

$$f(X_1, X_2, X_3) = (X_1^2 + 1)(X_2^2 + 1)(X_3^2 + 1).$$

Let $k = \mathbb{Q}(\alpha)$, where α has minimal polynomial $m(X) = X^3 + 2X^2 + 4X + 4$. Calculate $N(\alpha^2 + 1)$ and $N(\alpha^2 - 1)$.

Determine whether $\alpha^2 + 1$ and $\alpha^2 - 1$ are irreducible in \mathfrak{o}_k .

- 2. (a) Prove that every algebraic number field has an integral basis.
 - (b) Describe an algorithm for finding an integral basis.
 - (c) Let d ≠ 1 be a square-free integer and assume that d ≡ 1 mod 4. Show that ^{1+√d}/₂ is an algebraic integer. Show that {1, ^{1+√d}/₂} is an integral basis in Q(√d).
- 3. (a) Let $f \in \mathbb{Z}[X]$ be a monic polynomial of degree d, satisfying Eisenstein's criterion for the prime number p. For a zero α of f, define

$$\theta = \frac{1}{p} \sum_{i=0}^{d-1} a_i \alpha^i, \qquad a_0, \dots, a_{d-1} \in \{0, \dots, p-1\}.$$

Prove that if θ is an algebraic integer then $\theta = 0$.

- (b) Let p be a prime number and let $f(X) = X^p p$. Let α be a zero of f.
 - (i) Calculate $\left|\Delta\{1, \alpha, \dots, \alpha^{p-1}\}\right|$ in terms of p.
 - (ii) Hence show that $\{1, \alpha, \ldots, \alpha^{p-1}\}$ is an integral basis in $\mathbb{Q}(\alpha)$.

MATHC392

PLEASE TURN OVER

- 4. (a) Let o be the ring of algebraic integers in an algebraic number field k.
 Define the norm N(I) of a non-zero ideal I of o.
 Prove that N(IJ) = N(I)N(J) for any two non-zero ideals I, J ⊆ o.
 - (b) Let k = Q(α), where α has minimal polynomial m(X) = X³ + 4X + 2. Show that o_k = Z[α].
 Factorize (2), (3) and (5) into maximal ideals of o_k.
 Find the norm of each of the maximal ideals and show that they are all principal ideals.
- 5. Calculate the class group of the field $\mathbb{Q}(\sqrt{-33})$, giving a representative ideal for each ideal class and a multiplication table for the group.

MATHC392

END OF PAPER

è

۰.