UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ł

Mathematics C392: Algebraic Number Theory

COURSE CODE	: MATHC392
UNIT VALUE	: 0.50
DATE	: 20-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

05-C0940-3-30 © 2005 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

÷

The use of an electronic calculator is not permitted in this examination.

1. (a) Define the term algebraic integer.

Let $n \neq 0, 1$ be a square-free integer. Show that $\frac{1+\sqrt{n}}{2}$ is an algebraic integer if and only if $n \equiv 1 \mod 4$.

- (b) Describe an algorithm for finding an integral basis in an algebraic number field.
- (c) Find an integral basis in the field $\mathbb{Q}(\alpha)$, where α has minimal polynomial $X^3 3X 3$.
- 2. Let $p \ge 3$ be a prime number; let ζ be a primitive p-th root of unity; let $\lambda = \zeta 1$, and let $k = \mathbb{Q}(\zeta)$.
 - (a) Find the minimal polynomial of λ and show that it is irreducible.
 - (b) Calculate $N(\zeta)$, $N(\lambda)$ and $|\Delta\{1, \lambda, \dots, \lambda^{p-2}\}|$.
 - (c) Show that the ring of algebraic integers in k is $\mathbb{Z}[\zeta]$.
- 3. (a) Let O be the ring of algebraic integers in an algebraic number field k.
 Define the norm N(I) of a non-zero ideal I of O.
 Show that for a non-zero principal ideal I = (α), we have

$$N(I) = |N(\alpha)|.$$

(you may assume if you wish that k is a splitting field over \mathbb{Q}).

(b) Let I be a non-zero, principal ideal of Z[√30]. Show that N(I) is congruent to 0 or ±1 modulo 5.
 Here a show that Z[√20] is not a principal ideal domain

Hence show that $\mathbb{Z}[\sqrt{30}]$ is not a principal ideal domain.

- 4. (a) State and prove Dedekind's prime factorization theorem.
 - (b) Show that $\mathbb{Z}[\sqrt[3]{2}]$ is a principal ideal domain. You may assume that $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ is an integral basis in $\mathbb{Q}(\sqrt[3]{2})$.
- 5. Calculate the class group of the field $\mathbb{Q}(\sqrt{-30})$, giving a representative ideal for each ideal class and a multiplication table for the group.

MATHC392

END OF PAPER