ì

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

à

Mathematics C392: Algebraic Number Theory

COURSE CODE	: MATHC392
UNIT VALUE	: 0.50
DATE	: 06-MAY-04
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

- 1. (a) For an algebraic number field k define the terms:
 - (i) a field embedding;

5

1441

- (ii) the norm of an element;
- (iii) the trace of an element;
- (iv) the discriminant of a basis.
- (b) Describe an algorithm for finding an integral basis in k.
- (c) Let $d \in \mathbb{Z}$ be square-free and assume $d \neq 1$. Prove the following:
 - (i) if $d \equiv 1 \mod 4$ show that $\{1, \frac{1+\sqrt{d}}{2}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
 - (ii) if $d \neq 1 \mod 4$ show that $\{1, \sqrt{d}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
- 2. (a) Let $f \in \mathbb{Z}[X]$ be a polynomial of degree d satisfying Eisenstein's criterion for the prime number p. For a zero α of f, consider the element:

$$\theta = \frac{1}{p} \sum_{i=0}^{d-1} a_i \alpha^i, \qquad a_0, \dots, a_{d-1} \in \{0, \dots, p-1\}.$$

Prove that if θ is an algebraic integer and each $a_i \in \{0, 1, \dots, p-1\}$ then $\theta = 0$.

- (b) Let p be a prime number and let $f(X) = X^4 p$. Let α be a zero of f.
 - (i) Calculate $|\Delta\{1, \alpha, \alpha^2, \alpha^3\}|$ in terms of p.
 - (ii) By making the change of variable g(X) = f(X + 1) or otherwise, show that if $p \equiv 3 \mod 4$ then $\{1, \alpha, \alpha^2, \alpha^3\}$ is an integral basis in $\mathbb{Q}(\alpha)$.

MATHC392

PLEASE TURN OVER

- 3. (a) Let 𝔅 be the ring of algebraic integers in an algebraic number field k. Define the norm N(I) of a non-zero ideal I of 𝔅.
 Prove that N(IJ) = N(I)N(J) for any two non-zero ideals I, J ⊆ 𝔅.
 - (b) Consider the ideal $I = \langle 3 + 3\sqrt{15} \rangle$ in the ring $\mathbb{Z}[\sqrt{15}]$.
 - (i) Calculate N(I).

ł

- (ii) Factorize I into maximal ideals.
- (iii) Determine which of the maximal ideals dividing I are principal ideals.
- 4. (a) State and prove Dedekind's prime factorization theorem.
 - (b) Let α be a zero of the polynomial $f(X) = X^3 + 2X + 2$.
 - (i) Show that $\mathbb{Z}[\alpha]$ is the ring of algebraic integers in $\mathbb{Q}(\alpha)$.
 - (ii) Factorize $\langle 2 \rangle$, $\langle 3 \rangle$ and $\langle 5 \rangle$ into maximal ideals in $\mathbb{Z}[\alpha]$.
- 5. Calculate the class group of the field $\mathbb{Q}(\sqrt{-21})$, giving a representative ideal for each ideal class and a multiplication table for the group.

MATHC392

f