University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C392: Algebraic Number Theory

COURSE CODE : MATHC392

UNIT VALUE : 0.50

DATE : 06-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) For an algebraic number field k define the terms:
(i) a field embedding;
(ii) the norm of an element;
(iii) the trace of an element;
(iv) the discriminant of a basis.
(b) Describe an algorithm for finding an integral basis in k.
(c) Let $d \in \mathbb{Z}$ be square-free and assume $d \neq 1$. Prove the following:
(i) if $d \equiv 1 \bmod 4$ show that $\left\{1, \frac{1+\sqrt{d}}{2}\right\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
(ii) if $d \not \equiv 1 \bmod 4$ show that $\{1, \sqrt{d}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
2. (a) Let $f \in \mathbb{Z}[X]$ be a polynomial of degree d satisfying Eisenstein's criterion for the prime number p. For a zero α of f, consider the element:

$$
\theta=\frac{1}{p} \sum_{i=0}^{d-1} a_{i} \alpha^{i}, \quad a_{0}, \ldots, a_{d-1} \in\{0, \ldots, p-1\}
$$

Prove that if θ is an algebraic integer and each $a_{i} \in\{0,1, \ldots, p-1\}$ then $\theta=0$.
(b) Let p be a prime number and let $f(X)=X^{4}-p$. Let α be a zero of f.
(i) Calculate $\left|\Delta\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}\right|$ in terms of p.
(ii) By making the change of variable $g(X)=f(X+1)$ or otherwise, show that if $p \equiv 3 \bmod 4$ then $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ is an integral basis in $\mathbb{Q}(\alpha)$.
3. (a) Let \mathfrak{O} be the ring of algebraic integers in an algebraic number field k.

Define the norm $N(I)$ of a non-zero ideal I of \mathfrak{D}.
Prove that $N(I J)=N(I) N(J)$ for any two non-zero ideals $I, J \subseteq \mathfrak{O}$.
(b) Consider the ideal $I=\langle 3+3 \sqrt{15}\rangle$ in the ring $\mathbb{Z}[\sqrt{15}]$.
(i) Calculate $N(I)$.
(ii) Factorize I into maximal ideals.
(iii) Determine which of the maximal ideals dividing I are principal ideals.
4. (a) State and prove Dedekind's prime factorization theorem.
(b) Let α be a zero of the polynomial $f(X)=X^{3}+2 X+2$.
(i) Show that $\mathbb{Z}[\alpha]$ is the ring of algebraic integers in $\mathbb{Q}(\alpha)$.
(ii) Factorize $\langle 2\rangle,\langle 3\rangle$ and $\langle 5\rangle$ into maximal ideals in $\mathbb{Z}[\alpha]$.
5. Calculate the class group of the field $\mathbb{Q}(\sqrt{-21})$, giving a representative ideal for each ideal class and a multiplication table for the group.

