UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

P-1

\$

Mathematics C392: Algebraic Number Theory

COURSE CODE	:	MATHC392
UNIT VALUE	:	0.50
DATE	:	01-MAY-03
TIME	:	14.30
TIME ALLOWED	:	2 Hours

03-C0929-3-40 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- (a) Define the term *integral basis* for an algebraic number field k. Describe an algorithm for finding an integral basis.
 - (b) Let $d \in \mathbb{Z}$ be square-free and assume $d \neq 1$. Using your algorithm show that
 - (i) if $d \equiv 1 \mod 4$ then $\{1, \frac{1+\sqrt{d}}{2}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
 - (ii) if $d \not\equiv 1 \mod 4$ then $\{1, \sqrt{d}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
- 2. (a) Let $f \in \mathbb{Z}[X]$ be a polynomial of degree d satisfying Eisenstein's criterion for the prime number p. For a zero α of f, consider the element:

$$\theta = \frac{1}{p} \sum_{i=0}^{d-1} a_i \alpha^i, \qquad a_0, \dots, a_{d-1} \in \{0, \dots, p-1\}.$$

Prove that if θ is an algebraic integer then $a_0 = \ldots = a_{d-1} = 0$.

(b) Let $f(X) = X^d - a$ be irreducible and let α be a zero of f. Show that

 $\Delta\{1, \alpha, \dots, \alpha^{d-1}\} = \pm (da)^{d-1}.$

(You may assume that $\Delta\{1, \alpha, \dots, \alpha^{d-1}\} = \pm N(f'(\alpha))$).

- (c) For each of the following polynomials f, find an integral basis in $\mathbb{Q}(\alpha)$, where α is a zero of f.
 - (i) $f(x) = x^3 4x 2;$
 - (ii) $f(x) = x^4 2;$
 - (iii) $f(x) = x^3 2$.

MATHC392

PLEASE TURN OVER

- 3. (a) Let 𝔅 be the ring of algebraic integers in an algebraic number field k.
 Define the norm of an ideal of 𝔅.
 Prove that N(IJ) = N(I)N(J) for any two ideals I, J ⊆ 𝔅.
 - (b) Consider the ideal $I = \langle 2 + \sqrt{22} \rangle$ in the ring $\mathbb{Z}[\sqrt{22}]$.
 - (i) Calculate N(I).
 - (ii) Factorize I into maximal ideals.
 - (iii) Determine which of the factors of I are principal ideals.
- 4. (a) State and prove Dedekind's prime factorization theorem.
 - (b) Factorize (2), (3) and (5) into maximal ideals in Z[α], where α is a zero of the polynomial X³ − 3X + 3.
- 5. Calculate the class groups of the field $\mathbb{Q}(\sqrt{-30})$, giving a representative ideal for each ideal class and a multiplication table for the group.

MATHC392

END OF PAPER

4