UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.SC.
M.Sci.

Mathematics C392: Algebraic Number Theory

COURSE CODE : MATHC392

UNIT VALUE : 0.50

DATE : 29-APR-02

TIME
: 14.30

TIME ALLOWED : $\mathbf{2}$ hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Let $d \in \mathbb{Z}$ be square-free integer and suppose $d \neq 1$.

Prove:
(i) if $d \not \equiv 1 \bmod 4$ then $\{1, \sqrt{d}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$;
(ii) if $d \equiv 1 \bmod 4$ then $\left\{1, \frac{1+\sqrt{d}}{2}\right\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
(b) Find an integral basis in the field $\mathbb{Q}(\alpha)$, where α is a zero of the polynomial $X^{3}+2 X+2$.
2. Let p be an odd prime number and let ζ be a primitive p-th root of unity. Let $\lambda=\zeta-1$.
(a) Write down the minimal polynomial of ζ.

Hence find the minimal polynomial of λ.
Find $N(\zeta)$ and $N(\lambda)$.
(b) Consider the basis $\left\{1, \lambda, \ldots, \lambda^{p-2}\right\}$ of the field $\mathbb{Q}(\zeta)$.

Show that $\Delta\left\{1, \lambda, \ldots, \lambda^{p-2}\right\}= \pm p^{p-2}$. Any formulae for discriminants which you use should be clearly stated.
Prove that $\left\{1, \lambda, \ldots, \lambda^{p-2}\right\}$ is an integral basis in $\mathbb{Q}(\zeta)$. You may assume that λ^{p-1} divides p in the ring of algebraic integers in $\mathbb{Q}(\zeta)$.
3. (a) Let \mathfrak{O} be the ring of algebraic integers in an algebraic number field k. Prove that for non-zero ideals I, J of \mathcal{D},

$$
N(I J)=N(I) N(J)
$$

(b) Calculate the norm of the ideal $I=\langle 6,2+\sqrt{-26}\rangle$ of $\mathbb{Z}[\sqrt{-2 \overline{6}}]$.

Hence or otherwise show that $\mathbb{Z}[\sqrt{-26}]$ is not a principal ideal domain.
Factorize the ideal $\langle 6,2+\sqrt{-26}\rangle$ into prime ideals of $\mathbb{Z}[\sqrt{-26}]$.
4. (a) State and prove Dedekind's Prime Factorization Theorem.
(b) C nsider the field $k=\mathbb{Q}(\alpha)$, where α is a zero of the polynomial $f(X)=X^{3}+X+3$.
Show that the ring of algebraic integers in k is $\mathbb{Z}[\alpha]$.
Factorize the ideals $\langle 2\rangle,\langle 3\rangle$ and $\langle\alpha+4\rangle$ into maximal ideals of $\mathbb{Z}[\alpha]$.
5. Calculate the class group of the field $\mathbb{Q}(\sqrt{-30})$, giving a representative for each ideal class and a multiplication table for the group.

