UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

Mathematics C392: Algebraic Number Theory

COURSE CODE	: MATHC392
UNIT VALUE	: 0.50
DATE	: 29-APR-02
TIME	: 14.30
TIME ALLOWED	: 2 hours

02-C0924-3-30

© 2002 University of London

~

TURN OVER

.

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Let $d \in \mathbb{Z}$ be square-free integer and suppose $d \neq 1$. Prove:
 - (i) if $d \not\equiv 1 \mod 4$ then $\{1, \sqrt{d}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$;
 - (ii) if $d \equiv 1 \mod 4$ then $\{1, \frac{1+\sqrt{d}}{2}\}$ is an integral basis in $\mathbb{Q}(\sqrt{d})$.
 - (b) Find an integral basis in the field $\mathbb{Q}(\alpha)$, where α is a zero of the polynomial $X^3 + 2X + 2$.
- 2. Let p be an odd prime number and let ζ be a primitive p-th root of unity. Let $\lambda = \zeta 1$.
 - (a) Write down the minimal polynomial of ζ. Hence find the minimal polynomial of λ. Find N(ζ) and N(λ).
 - (b) Consider the basis {1,λ,...,λ^{p-2}} of the field Q(ζ).
 Show that Δ{1,λ,...,λ^{p-2}} = ±p^{p-2}. Any formulae for discriminants which you use should be clearly stated.

Prove that $\{1, \lambda, \ldots, \lambda^{p-2}\}$ is an integral basis in $\mathbb{Q}(\zeta)$. You may assume that λ^{p-1} divides p in the ring of algebraic integers in $\mathbb{Q}(\zeta)$.

3. (a) Let \mathfrak{O} be the ring of algebraic integers in an algebraic number field k. Prove that for non-zero ideals I, J of \mathfrak{O} ,

$$N(IJ) = N(I)N(J).$$

(b) Calculate the norm of the ideal I = (6, 2 + √-26) of Z[√-26].
Hence or otherwise show that Z[√-26] is not a principal ideal domain.
Factorize the ideal (6, 2 + √-26) into prime ideals of Z[√-26].

MATHC392

PLEASE TURN OVER

- 4. (a) State and prove Dedekind's Prime Factorization Theorem.
 - (b) Consider the field k = Q(α), where α is a zero of the polynomial f(X) = X³ + X + 3.
 Show that the ring of algebraic integers in k is Z[α].

Factorize the ideals $\langle 2 \rangle$, $\langle 3 \rangle$ and $\langle \alpha + 4 \rangle$ into maximal ideals of $\mathbb{Z}[\alpha]$.

5. Calculate the class group of the field $\mathbb{Q}(\sqrt{-30})$, giving a representative for each ideal class and a multiplication table for the group.

MATHC392

END OF PAPER