University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M120: Algebra for Joint Honours Students

COURSE CODE : MATHM120

UNIT VALUE : 0.50

DATE : 23-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let

$$
\sigma=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 3 & 4 & 6 & 1 & 2 & 5
\end{array}\right), \quad \tau=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 1 & 2 & 6 & 7 & 5
\end{array}\right) .
$$

(a) Express σ and τ in cycle notation.
(b) Find (in standard notation) $\tau \sigma, \sigma \tau$, and τ^{-1}.
(c) What are the orders of τ, σ, and $\sigma \tau$?
(d) Give, with explanations, the signs of τ, σ, and $\sigma \tau$.
(e) Express the 7 -cycle (1234567) as a product of 2 -cycles.
(f) Let S_{n} be the group of permutations of n elements. What is the order of S_{7} ? Find an isomorphism between S_{7} and a subgroup of S_{8}.
2. (a) Let $\left\langle\mathbb{Z}_{7}^{*}, \bullet\right\rangle$ be the multiplicative group $\bmod 7($ where $a \bullet b \equiv a b \bmod 7)$. In this group, find the group elements corresponding to
(i) $5 \bullet 6$;
(ii) 3^{-1};
(iii) 4^{-1};
(iv) 6^{11}.
(b) Find the following numbers using modular arithmetic:
(i) $-33 \bmod 7$;
(ii) $18^{399964} \bmod 17$;
(iii) $724599364 \bmod 9$;
(iv) $22^{301} \bmod 31$.
(c) For each of the following functions, determine which functions are one-to-one (injective), and which functions are onto (surjective). If a function is not one-to-one or not onto, explain why not.
(i) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=\tanh x$;
(ii) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad g(x)=(x-1)^{3}$;
(iii) $h: \mathbb{Z} \rightarrow \mathbb{Z}, \quad h(x)=2 x-1$.
(d) Consider the symmetry group of a square, D_{4}, with elements $\left\{e, r, r^{2}, r^{3}, f, r f, r^{2} f, r^{3} f\right\}$.
(i) Show by simple diagrams, or otherwise, that

$$
f r=r^{3} f
$$

(ii) Reduce the following element to its simplest form:

$$
f^{17} r^{33} f^{92} r^{28} f^{11}
$$

3. (a) What are the four defining properties of a group?
(b) Suppose $\langle G, *\rangle$ is a group, and let centre (G) be the set of elements in G which commute with all other elements in G : i.e. if $c \in \operatorname{centre}(G)$ then

$$
c g=g c \quad \forall g \in G
$$

Show that centre (G) is a subgroup of G.
(c) Let \mathcal{C} be the set of complex numbers z of unit modulus $|z|=1$, i.e. complex numbers of the form $z=\exp i \theta$.
(i) Show that \mathcal{C} is a group under complex multiplication.
(ii) Show that the set of fifth roots of unity

$$
\mathcal{W}_{5}=\left\{w \in \mathbb{C} \mid w^{5}=1\right\}
$$

with complex multiplication is a subgroup of \mathcal{C}.
(iii) Find an isomorphism between the subgroup \mathcal{W}_{5} and $\left\langle\mathbb{Z}_{5}, \oplus\right\rangle$, the additive group $\bmod 5\left(\right.$ where $\mathbb{Z}_{5}=\{0,1,2,3,4\}$ and $\left.a \oplus b \equiv a+b \bmod 5\right)$.
4. (a) Consider row reduction operations on a 3×3 matrix. What is the elementary matrix corresponding to exchanging rows 2 and 3 ? What is the elementary matrix which adds row 1 to row 2?
(b) Briefly describe how to invert matrices using elementary row operations.
(c) What is the augmented matrix corresponding to the system of linear equations

$$
\begin{aligned}
2 x+3 y-z & =-1 \\
x+y+z & =6 \\
-2 x+y+2 z & =1
\end{aligned}
$$

(d) Transform the augmented matrix to reduced row echelon form. What is the solution (if any) to the system of equations?
5. (a) State what it means for $T: U \rightarrow V$ to be a linear transformation between vector spaces U and V. Define the kernel $\operatorname{Ker}(T)$ and image $\operatorname{Image}(T)$ of such a transformation.
(b) State (without proof) a formula involving the dimensions of these spaces.
(c) Let U be the space of real polynomials of degree at most 4 . What is the dimension of U ? Define $T: U \rightarrow U$ by the following: for a function $p(x)$ in U,

$$
(T p)(x)=\frac{\mathrm{d}^{2} p(x)}{\mathrm{d} x^{2}}
$$

Find the kernel and image of T. What are their dimensions?
(d) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{a}=\binom{2}{1}$ into $T \mathbf{a}=\binom{4}{1}$ and maps $\mathbf{b}=\binom{1}{1}$ into $T \mathbf{b}=\binom{-1}{2}$. Use the fact that T is linear to find $T(2 \mathbf{a}+\mathbf{b})$. What matrix (with respect to the standard basis) does T correspond to?
(e) Are the following three vectors linearly independent?

$$
\begin{aligned}
& \mathbf{v}_{1}=(1,0,-1) ; \\
& \mathbf{v}_{2}=(0,1,-1) ; \\
& \mathbf{v}_{3}=(1,-1,0)
\end{aligned}
$$

6. Let

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-5 & -2
\end{array}\right]
$$

(a) Find all eigenvalues for A.
(b) Find associated eigenvectors.
(c) Find an invertible matrix B and a diagonal matrix Δ such that $B^{-1} A B=\Delta$.
(d) Find an expression for A^{17} in terms of B and Δ (you do not need to calculate this expression).

