University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M120: Algebra for Joint Honours Students

COURSE CODE : MATHM120

UNIT VALUE : 0.50

DATE : 24-MAY-05
time
: 10.00

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let

$$
\sigma=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 5 & 6 & 2
\end{array}\right), \quad \tau=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6 & 1
\end{array}\right) .
$$

(a) Express σ and τ in cycle notation.
(b) Find (in standard notation) $\tau \sigma, \sigma \tau$, and σ^{-1}.
(c) What are the orders of τ, σ, and $\tau \sigma$?
(d) Give, with explanations, the signs of τ, σ, and $\tau \sigma$.
(e) Express τ explicitly as a product of flips (transpositions). Draw a braid diagram for τ.
2. (a) Find the following numbers using modular arithmetic:
(i) $23 \bmod 3$;
(ii) $7^{3285} \bmod 6$;
(iii) $5^{3285} \bmod 6$;
(iv) $9187236454 \bmod 9$;
(v) $17^{42} \bmod 43$.
(b) For each of the following functions, determine which functions are one-to-one (injective), and which functions are onto (surjective). If a function is not one-to-one or not onto, explain why not. The set $(-\pi / 2, \pi / 2)$ is the real interval $-\pi / 2<x<\pi / 2$.
(i) $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{3}-x$;
(ii) $g: \mathbb{Z} \rightarrow \mathbb{R}, \quad g(x)=x$;
(iii) $h:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}, \quad h(x)=\tan (x)$.
(c) The symmetry group of a pentagon (the dihedral group D_{5}) has elements

$$
\left\{e, r, r^{2}, r^{3}, r^{4}, f, r f, r^{2} f, r^{3} f, r^{4} f\right\}
$$

where r gives a rotation through 72° and f gives a flip.
Which group elements listed above correspond to the following products:
(i) $f r^{4}$;
(ii) $\left(r^{2} f\right)^{-1}$;
(iii) $r^{5} f^{3} r^{21} f^{4} r f r f$.
(d) Find subgroups of D_{5} of order 2 and 5.

PLEASE TURN OVER
3. (a) Let a, b, and c be elements of the group $\langle G, *\rangle$. Show that if $a * b=a * c$ then $b=c$.
(b) Suppose H is a subgroup of G. Consider elements g and k in G, and let

$$
g H=\{g * h \mid h \in H\}, \quad k H=\{k * h \mid h \in H\}
$$

be left cosets of H. Suppose that g is not an element of $k H$. Show that $g H$ has no elements in common with $k H$, i.e. the intersection of $g H$ and $k H$ is null.
(c) Show that $|g H|=|k H|=|H|$.
(d) Hence state and prove Lagrange's theorem.
4. (a) Describe three types of elementary row operations.
(b) What is the augmented matrix corresponding to the system of linear equations

$$
\begin{aligned}
x-y+z & =-4 \\
2 y+y+5 z & =1 \\
3 x-2 y-2 z & =3
\end{aligned}
$$

(c) Transform the augmented matrix to reduced row echelon form. What is the solution (if any) to the system of equations?
5. (a) Consider a set of n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. What condition must these vectors satisfy in order for them to be linearly dependent?
(b) Are the following three vectors linearly independent?

$$
\begin{align*}
& \mathbf{v}_{1}=(1,2,3) \tag{1}\\
& \mathbf{v}_{2}=(2,3,4) ; \tag{2}\\
& \mathbf{v}_{3}=(0,1,2) . \tag{3}
\end{align*}
$$

(c) Find a basis for the vector space of 2×3 matrices.
(d) Let $G L(n)$ be the group of invertible $n \times n$ matrices with matrix multiplication. Also let $O(n)$ be the set of orthogonal $n \times n$ matrices, i.e. matrices which satisfy $A^{-1}=A^{T}$. Show that $O(n)$ is a subgroup of $G L(n)$.
(e) Suppose $A \in O(n)$ is an orthogonal matrix. Show that $|\operatorname{det} A|=1$.
6. Let

$$
A=\left[\begin{array}{cc}
5 & 3 \\
-1 & 1
\end{array}\right]
$$

(a) Find all eigenvalues for A.
(b) Find the associated eigenvectors.
(c) Find an invertible matrix B and a diagonal matrix Δ such that $B^{-1} A B=\Delta$.
(d) Hence find a square root matrix P which satisfies the equation

$$
P^{2}=A
$$

