UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

. +

1

Mathematics M120: Algebra for Joint Honours Students

COURSE CODE : MATHM120

UNIT VALUE : 0.50

DATE : 24-MAY-05

TIME : 10.00

TIME ALLOWED : 2 Hours

.

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. Let

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 5 & 6 & 2 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}.$

- (a) Express σ and τ in cycle notation.
- (b) Find (in standard notation) $\tau\sigma$, $\sigma\tau$, and σ^{-1} .
- (c) What are the orders of τ , σ , and $\tau\sigma$?
- (d) Give, with explanations, the signs of τ , σ , and $\tau\sigma$.
- (e) Express τ explicitly as a product of flips (transpositions). Draw a braid diagram for τ .

2. (a) Find the following numbers using modular arithmetic:

- (i) 23 mod 3;
- (ii) 7³²⁸⁵ mod 6;
- (iii) $5^{3285} \mod 6$;
- (iv) 9187236454 mod 9;
- (v) $17^{42} \mod 43$.
- (b) For each of the following functions, determine which functions are one-to-one (injective), and which functions are onto (surjective). If a function is not one-to-one or not onto, explain why not. The set $(-\pi/2, \pi/2)$ is the real interval $-\pi/2 < x < \pi/2$.
 - (i) $f : \mathbb{R} \to \mathbb{R},$ $f(x) = x^3 x;$ (ii) $g : \mathbb{Z} \to \mathbb{R},$ g(x) = x;
 - (iii) $h: (-\pi/2, \pi/2) \to \mathbb{R}, \qquad h(x) = \tan(x).$
- (c) The symmetry group of a pentagon (the dihedral group D_5) has elements

$$\{e, r, r^2, r^3, r^4, f, rf, r^2f, r^3f, r^4f\},\$$

where r gives a rotation through 72° and f gives a flip.

Which group elements listed above correspond to the following products:

- (i) fr^4 ;
- (ii) $(r^2 f)^{-1};$
- (iii) $r^5 f^3 r^{21} f^4 r f r f$.

(d) Find subgroups of D_5 of order 2 and 5. MATHM120

PLEASE TURN OVER

- 3. (a) Let a, b, and c be elements of the group $\langle G, * \rangle$. Show that if a * b = a * c then b = c.
 - (b) Suppose H is a subgroup of G. Consider elements g and k in G, and let

$$gH = \{g * h \mid h \in H\}, \qquad kH = \{k * h \mid h \in H\}$$

be left cosets of H. Suppose that g is not an element of kH. Show that gH has no elements in common with kH, i.e. the intersection of gH and kH is null.

- (c) Show that |gH| = |kH| = |H|.
- (d) Hence state and prove Lagrange's theorem.
- 4. (a) Describe three types of elementary row operations.
 - (b) What is the augmented matrix corresponding to the system of linear equations

$$\begin{array}{rcl} x - y + z &=& -4;\\ 2y + y + 5z &=& 1;\\ 3x - 2y - 2z &=& 3. \end{array}$$

- (c) Transform the augmented matrix to reduced row echelon form. What is the solution (if any) to the system of equations?
- 5. (a) Consider a set of n vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. What condition must these vectors satisfy in order for them to be linearly dependent?
 - (b) Are the following three vectors linearly independent?

$$\mathbf{v}_1 = (1, 2, 3); \tag{1}$$

$$\mathbf{v}_2 = (2,3,4);$$
 (2)

$$\mathbf{v}_3 = (0, 1, 2).$$
 (3)

- (c) Find a basis for the vector space of 2×3 matrices.
- (d) Let GL(n) be the group of invertible $n \times n$ matrices with matrix multiplication. Also let O(n) be the set of orthogonal $n \times n$ matrices, i.e. matrices which satisfy $A^{-1} = A^T$. Show that O(n) is a subgroup of GL(n).
- (e) Suppose $A \in O(n)$ is an orthogonal matrix. Show that $|\det A| = 1$.

MATHM120

CONTINUED

6. Let

$$A = \begin{bmatrix} 5 & 3\\ -1 & 1 \end{bmatrix}$$

(a) Find all eigenvalues for A.

(b) Find the associated eigenvectors.

(c) Find an invertible matrix B and a diagonal matrix Δ such that $B^{-1}AB = \Delta$.

(d) Hence find a square root matrix P which satisfies the equation

$$P^2 = A.$$

MATHM120

END OF PAPER

794 794