UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M120: Algebra for Joint Honours Students

COURSE CODE:MATHM120UNIT VALUE:0.50DATE:02-MAY-03TIME:14.30TIME ALLOWED:2 Hours

03-C0941-3-50 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Let G be the group with presentation

$$G := \langle r, s \, | \, r^2 = s^2 = (rs)^4 = e \rangle.$$

Show that G has order 8.

Construct a group table for G.

2. Define the term $signum \operatorname{sgn} \rho$ of a permutation $\rho \in S_n$, and prove that, if $\tau \in S_n$ is a transposition, then

$$\operatorname{sgn}(\tau\rho) = -\operatorname{sgn}\rho.$$

Let $\rho, \sigma \in S_7$ be

1.

4

$$\rho := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 4 & 2 & 6 & 1 & 5 \end{pmatrix}, \qquad \sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 1 & 7 & 2 & 5 & 4 \end{pmatrix}.$$

Express ρ , σ , $\rho^{-1}\sigma$ and $\sigma^2\rho^{-3}$ in cycle notation, and find each of their signa.

3. For what values of α does the following system of linear equations have a solution. Find all the solutions when α takes these values.

MATHM120

PLEASE TURN OVER

4. Let A be the 4×6 matrix

3	3	9	0	-4	2]
-1	-2	-2	-2	2	1
-1	-4	0	-6	9	10
$\lfloor -2 \rfloor$	-1	-7	2	-2	-7

Find bases for both the row space and the column space of A, explaining carefully why your method yields the required answers.

5. Let M be an $n \times n$ matrix over the field \mathbb{F} . Show that there exist an invertible matrix B and a diagonal matrix Δ , such that $B^{-1}MB = \Delta$, if and only if \mathbb{F}^n has a basis consisting of eigenvectors of M.

Diagonalize, if possible, the matrix

$$M := \begin{bmatrix} 0 & 2 & 2 \\ -2 & -5 & -4 \\ 1 & 2 & 1 \end{bmatrix}.$$

6. What does it mean to say that the set $\{u_1, \ldots, u_k\}$ of vectors in \mathbb{R}^n is orthonormal? Prove that an orthonormal set is linearly independent. If $\{u_1, \ldots, u_k\}$ is an orthonormal set and x is a linear combination of u_1, \ldots, u_k , explain (with proof) how to find the coefficients in the linear combination in terms of x and u_1, \ldots, u_k alone.

Define what it means to say that an $n \times n$ matrix U is orthogonal. Prove that the family \mathcal{O}_n of $n \times n$ orthogonal matrices forms a group.

MATHM120

END OF PAPER

1