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All questions may be attempted but only marks obtained on the best four solutions will

count.
The use of an electronic calculator is not permitted in this ezamination.

1. Let G be the group with presentation
G:={rs|r*=5=(rs)* =e).

Show that G has order 8.
Construct a group table for G.

2. Define the term signum sgnp of a permutation p € S,, and prove that, if 7 € S, is
a transposition, then

sgn(7p) = —sgn p.

Let p,0 € 57 be
/1 2 34567 (1 23 45 67
P=\7 3426 15) “T\g3 17254}

Express p, o, p~'o and 0?p™% in cycle notation, and find each of their signa.

3. For what values of a does the following system of linear equations have a solution.
Find all the solutions when « takes these values.

260 — 46 + 45 + B4 = «a
=&+ 26 — 25 4+ a4y = 3
3 — 6L + 5% + 84 = 2
51 - 2‘52 + 263 + 364 = 1
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4. Let A be the 4 x 6 matrix

3 3 9 0 -4 2
-1 -2 -2 -2 2 1
-1 -4 0 -6 9 10
-2 -1 -7 2 =2 -7

Find bases for both the row space and the column space of A, explaining carefully
why your method yields the required answers.

5. Let M be an n x n matrix over the field F. Show that there exist an invertible
matrix B and a diagonal matrix A, such that B-!M B = A, if and only if F” has a
basis consisting of eigenvectors of M.

Diagonalize, if possible, the matrix

0o 2 2
M:=|-2 -5 —4
1 2 1

6. What does it mean to say that the set {u;,...,u;} of vectors in R” is orthonormal?
Prove that an orthonormal set is linearly independent. If {u,,...,u;} is an ortho-
normal set and z is a linear combination of u,, ..., u;, explain (with proof) how to
find the coefficients in the linear combination in terms of z and uy, ..., U alone.

Define what it means to say that an n x n matrix U is orthogonal. Prove that the
family O, of n x n orthogonal matrices forms a, group.
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