University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M120: Algebra for Joint Honours Students

COURSE CODE : MATHM120

UNIT VALUE : 0.50

DATE : 02-MAY-03

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let G be the group with presentation

$$
G:=\left\langle r, s \mid r^{2}=s^{2}=(r s)^{4}=e\right\rangle
$$

Show that G has order 8 .
Construct a group table for G.
2. Define the term signum $\operatorname{sgn} \rho$ of a permutation $\rho \in S_{n}$, and prove that, if $\tau \in S_{n}$ is a transposition, then

$$
\operatorname{sgn}(\tau \rho)=-\operatorname{sgn} \rho
$$

Let $\rho, \sigma \in S_{7}$ be

$$
\rho:=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 3 & 4 & 2 & 6 & 1 & 5
\end{array}\right), \quad \sigma:=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 3 & 1 & 7 & 2 & 5 & 4
\end{array}\right) .
$$

Express $\rho, \sigma, \rho^{-1} \sigma$ and $\sigma^{2} \rho^{-3}$ in cycle notation, and find each of their signa.
3. For what values of α does the following system of linear equations have a solution. Find all the solutions when α takes these values.

$$
\begin{aligned}
2 \xi_{1}-4 \xi_{2}+4 \xi_{3}+5 \xi_{4}= & \alpha \\
-\xi_{1}+2 \xi_{2}-2 \xi_{3}+\alpha \xi_{4}= & 3 \\
3 \xi_{1}-6 \xi_{2}+5 \xi_{3}+8 \xi_{4}= & 2 \alpha \\
\xi_{1}-2 \xi_{2}+2 \xi_{3}+3 \xi_{4}= & 1
\end{aligned}
$$

4. Let A be the 4×6 matrix

$$
\left[\begin{array}{cccccc}
3 & 3 & 9 & 0 & -4 & 2 \\
-1 & -2 & -2 & -2 & 2 & 1 \\
-1 & -4 & 0 & -6 & 9 & 10 \\
-2 & -1 & -7 & 2 & -2 & -7
\end{array}\right]
$$

Find bases for both the row space and the column space of A, explaining carefully why your method yields the required answers.
5. Let M be an $n \times n$ matrix over the field \mathbb{F}. Show that there exist an invertible matrix B and a diagonal matrix Δ, such that $B^{-1} M B=\Delta$, if and only if \mathbb{F}^{n} has a basis consisting of eigenvectors of M.
Diagonalize, if possible, the matrix

$$
M:=\left[\begin{array}{ccc}
0 & 2 & 2 \\
-2 & -5 & -4 \\
1 & 2 & 1
\end{array}\right] .
$$

6. What does it mean to say that the set $\left\{u_{1}, \ldots, u_{k}\right\}$ of vectors in \mathbb{R}^{n} is orthonormal? Prove that an orthonormal set is linearly independent. If $\left\{u_{1}, \ldots, u_{k}\right\}$ is an orthonormal set and x is a linear combination of u_{1}, \ldots, u_{k}, explain (with proof) how to find the coefficients in the linear combination in terms of x and u_{1}, \ldots, u_{k} alone.
Define what it means to say that an $n \times n$ matrix U is orthogonal. Prove that the family \mathcal{O}_{n} of $n \times n$ orthogonal matrices forms a group.
