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All questions may be attempted but only marks obtained on the best four 
solutions will count. 

The use of an electronic calculator is not  permitted in this examination. 

. (a) Let K be a field, and let a and f~ be algebraic over K wi th  min imum 
polynomials  of degree a and b respectively. S ta t ing  c lear ly  any results 
you use, prove t h a t  lcm(a,b) < [K(a, fl) : K] < ab. Jus t i fy ing  your 
answers, give an example of each of the  following: 

(i) lcm(a,b) < [K(a ,  f l ) :  K] =ab, 

(ii) lcm(a,b) - - [ K ( a ,  f~) • K] < ab. 

(b) Jus t i fy ing  your  answers, find the  degree of each of the  following 
extensions: 

3 (i) Q ( a )  • Q ( a  + ~ ) ,  where a = 5 l/T, 

(ii) Q ( v ~  + v/6) • Q. 

. (a) Prove Dedekind ' s  Lemma, i.e. t h a t  any set of d i s t inc t  monomor- 
phisms from one field K to another  field L is l inear ly  independen t  over 
L. 

(b) W h a t  does it mean  to say tha t  a group G is soluble? If  G is soluble 
and H is a subgroup,  prove tha t  H is soluble. 

. (a) Let L : K be a field extension. Define what  it means  to say tha t  
L • K is (i) normal, (ii) a splitting field for some po lynomia l  f over K.  
Prove tha t  L • K is a spli t t ing field for some po lynomia l  over K if and 
only if L • K is a finite normal extension. 

(b) Let K C L C F and K c_ M C_ F for fields K,  L, M,  F and  suppose 
tha t  L • K and  M : K are normal extensions. Prove t h a t  L n M • K 
and L M  • K are normal  extensions. (Here L M  denotes  the  subfield of 
F generated by L and M.)  
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. Suppose tha t  K is an infinite field of characteristic 0, and L : K is a 
finite extension. 

(a) Stat ing clearly any results that  you use, prove that  there are only 
a finite number of fields M such that  K C M C L. 

(b) Hence prove that  any finite extension of K is simple. 

(c) Let L -- Q(~r~, ~/~). Find an element a E L such that  L = Q(~),  
just ifying your answer. 

5. Let L be the split t ing field of the polynomial t 7 - 1 over Q. Find the 
Ga!ois group G of L : Q. Find all intermediate fields K. Show that  
one of these intermediate fields is Q(vr:-7). 

[You should justify your reasoning but may assume relevant results, 
including the Fundamental Theorem of Galois Theory.] 
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