UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C332: Algebra II

COURSE CODE	: MATHC332
UNIT VALUE	: 0.50
DATE	: 17-MAY-05
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Prove that if L: K and M: L are field extensions of finite degree, then M: K is an extension of finite degree given by [M:K] = [M:L][L:K].
 - (b) Justifying your answers, find the following:
 - (i) all fields M such that $\mathbf{Q} \subseteq M \subseteq \mathbf{Q}(\sqrt[5]{7})$,
 - (ii) $[\mathbf{Q}(\sqrt[3]{2},\sqrt[4]{3}):\mathbf{Q}(\sqrt[3]{2})].$
- 2. (a) Let G be a finite group of automorphisms of a field K and let K_0 be the fixed field of G. Prove that $[K:K_0] = |G|$. [You may assume Dedekind's Lemma]
 - (b) $L = \mathbf{C}(t)$ (where t is an indeterminate). Let $\phi : L \longrightarrow L$ be the C-automorphism of L given by $\phi(t) = \frac{t+1}{t-1}$ and let G be the group generated by ϕ . Find the fixed field of G, justifying your answer.
- 3. Let L: K be a field extension. Define what it means to say that the extension L: K is (a) finite, (b) finitely generated, (c) algebraic, (d) normal (e) a splitting field. State, without proof, the logical relationships that hold between these properties.

Let $K \subseteq L \subseteq M$ be a tower of fields. For each of the following implications, either prove it, stating any results you use, or provide a counterexample:

- (i) L: K and M: L algebraic $\Rightarrow M: K$ algebraic;
- (ii) L: K and M: L normal $\Rightarrow M: K$ normal
- (iii) M: K normal and finite $\Rightarrow M: L$ normal
- (iv) $M: K \text{ normal} \Rightarrow M: L \text{ normal}$

MATHC332

PLEASE TURN OVER

- 4. (a) Give the definition of the following:
 - (i) the extension L: K is radical;
 - (ii) a polynomial $f \in K[t]$ is soluble by radicals;
 - (iii) the Galois group of $f(t) \in K[t]$.

State, without proof but defining your terms, the condition on the Galois group of f that is necessary and sufficient for f to be soluble by radicals.

- (b) Show that any quartic equation over \mathbf{Q} is soluble by radicals.
- (c) Let f be an irreducible quintic over \mathbf{Q} with exactly two non-real roots. Prove that f is not soluble by radicals.

[State clearly any results from group theory that you use in (b) and (c).]

5. Let $\alpha = \sqrt{2 + \sqrt{2}}$ and let $L = \mathbf{Q}(\alpha)$. Show that $L : \mathbf{Q}$ is normal. Find the Galois group and hence find all intermediate fields.

[You should justify your reasoning but may assume relevant results, including the Fundamental Theorem of Galois Theory.]

MATHC332

END OF PAPER

1