EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics C332: Algebra II

COURSE CODE	$:$ MATHC332
UNIT VALUE	$: 0.50$
DATE	$: 17-M A Y-05$
TIME	$: 14.30$
TIME ALLOWED	$: 2$ Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. (a) Prove that if $L: K$ and $M: L$ are field extensions of finite degree, then $M: K$ is an extension of finite degree given by $[M: K]=[M: L][L: K]$.
(b) Justifying your answers, find the following:
(i) all fields M such that $\mathbf{Q} \subseteq M \subseteq \mathbf{Q}(\sqrt[5]{7})$,
(ii) $[\mathbf{Q}(\sqrt[3]{2}, \sqrt[4]{3}): \mathbf{Q}(\sqrt[3]{2})]$.
2. (a) Let G be a finite group of automorphisms of a field K and let K_{0} be the fixed field of G. Prove that $\left[K: K_{0}\right]=|G|$. [You may assume Dedekind's Lemma]
(b) $L=\mathbf{C}(t)$ (where t is an indeterminate). Let $\phi: L \longrightarrow L$ be the \mathbf{C}-automorphism of L given by $\phi(t)=\frac{t+1}{t-1}$ and let G be the group generated by ϕ. Find the fixed field of G, justifying your answer.
3. Let $L: K$ be a field extension. Define what it means to say that the extension $L: K$ is (a) finite, (b) finitely generated, (c) algebraic, (d) normal (e) a splitting field. State, without proof, the logical relationships that hold between these properties.
Let $K \subseteq L \subseteq M$ be a tower of fields. For each of the following implications, either prove it, stating any results you use, or provide a counterexample:
(i) $L: K$ and $M: L$ algebraic $\Rightarrow M: K$ algebraic;
(ii) $L: K$ and $M: L$ normal $\Rightarrow M: K$ normal
(iii) $M: K$ normal and finite $\Rightarrow M: L$ normal
(iv) $M: K$ normal $\Rightarrow M: L$ normal
4. (a) Give the definition of the following:
(i) the extension $L: K$ is radical;
(ii) a polynomial $f \in K[t]$ is soluble by radicals;
(iii) the Galois group of $f(t) \in K[t]$.

State, without proof but defining your terms, the condition on the Galois group of f that is necessary and sufficient for f to be soluble by radicals.
(b) Show that any quartic equation over \mathbf{Q} is soluble by radicals.
(c) Let f be an irreducible quintic over \mathbf{Q} with exactly two non-real roots. Prove that f is not soluble by radicals.
[State clearly any results from group theory that you use in (b) and (c).]
5. Let $\alpha=\sqrt{2+\sqrt{2}}$ and let $L=\mathbf{Q}(\alpha)$. Show that $L: \mathbf{Q}$ is normal. Find the Galois group and hence find all intermediate fields.
[You should justify your reasoning but may assume relevant results, including the Fundamental Theorem of Galois Theory.]

