UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C332: Algebra II

COURSE CODE	:	MATHC332
UNIT VALUE	:	0.50
DATE	:	06-MAY-03
ТІМЕ	:	14.30
TIME ALLOWED	:	2 Hours

03-C0914-3-30 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) Prove that if L: K and M: L are field extensions of finite degree, then M: K is an extension of finite degree given by [M:K] = [M:L][L:K].
 - (b) Justifying your answers and stating clearly any results you use, find the following:
 - (i) $[\mathbf{Q}(\sqrt[5]{5},\sqrt[7]{7}):\mathbf{Q}],$
 - (ii) $[\mathbf{Q}(\omega^2 + 1) : \mathbf{Q}]$, where $\omega = e^{2\pi i/5}$.
- 2. Let G be a finite group of automorphisms of a field K and let K_0 be the fixed field of G. Prove that $[K:K_0] = |G|$. [You may assume Dedekind's Lemma]

If $K = \mathbf{C}(s, t)$ (where s and t are indeterminates) and G is the group of automorphisms of L generated by ϕ , where $\phi(t) = s$, $\phi(s) = t$, find K_0 .

3. Let L: K be a field extension. Define what it means to say that (i) L: K is a normal extension, (ii) L: K is a splitting field for some polynomial f over K. State (do not prove) a condition under which these two properties are equivalent.

For each of the following extensions, determine whether or not it is normal, justifying your answers.

- (i) $\mathbf{Z}_5(s) : \mathbf{Z}_5(s^5)$, where s is an indeterminate.
- (ii) $\mathbf{Z}_5(s) : \mathbf{Z}_5(s^3)$, where s is an indeterminate.
- (iii) $L_1 \cap L_2 : K$, where $K \subseteq L_i \subseteq F$ (i = 1, 2) for some field F and $L_i : K$ is a normal extension (i = 1, 2).
- (iv) $L_1L_2: K$, where $K \subseteq L_i \subseteq F$ (i = 1, 2) for some field F and $L_i: K$ is a normal extension (i = 1, 2). (Here L_1L_2 denotes the subfield of F generated by L_1 and L_2 .)
- 4. (a) What does it mean to say that a group G is *soluble*? Prove that if G is soluble, and H is a subgroup of G, then H is also soluble. Show that the group S_5 is not soluble (state any results you assume).
 - (b) Let f be an irreducible quintic over \mathbf{Q} with exactly two non-real roots. Stating clearly any results from group theory that you use, prove that the Galois group of f is S_5 .

MATHC332

PLEASE TURN OVER

5. Let L be the splitting field of the polynomial $t^6 - 2$ over **Q**. Find the Galois group G of $L : \mathbf{Q}$. Find all intermediate fields K of degree 4 over **Q**.

[You should justify your reasoning but may assume relevant results, including the Fundamental Theorem of Galois Theory.]

MATHC332

END OF PAPER