University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

1

Mathematics C331: Algebra I

COURSE CODE	:	MATHC331
UNIT VALUE	:	0.50
DATE	:	04-MAY-04
TIME	:	14.30
TIME ALLOWED	:	2 Hours

TURN OVER

1. Let R be an integral domain.

i.

- (a) For $a, b \in R$, state what it means to say that a is associated to b. Show this happens if and only if a | b and b | a.
- (b) For $a \in R$ state what it means to say that a is (i) an atom, (ii) a prime. If a is a prime, show that a is an atom.
- (c) State what it means to say that R is (i) a Euclidean domain, (ii) a principal ideal domain, (iii) a unique factorization domain. Show that any Euclidean domain is a principal ideal domain.
- (d) Find the atomic factorization of $7 + i \in \mathbb{Z}[i]$. Justify your answer.

[You may assume any standard results about $\mathbb{Z}[i]$ which you require.]

- 2. (a) State, without proof, the first isomorphism theorem for modules. Let P be a submodule of a module M. Show that the submodules K of M/P are of the form K = Q/P, where $P \subseteq Q \leq M$.
 - (b) State what it means to say that a *R*-module *M* is cyclic. Show that *M* is cyclic if and only if $M \cong R/I$ for some ideal *I* of *R*.
 - (c) Let R be an integral domain. Show that every submodule of every cyclic R-module is cyclic if and only if R is a principal ideal domain.

MATHC331

3. Let (R, N) be a Euclidean Domain and $A \in {}^{m}R^{n}$.

Define the Smith Normal Form of A and state to what extent it is unique. Describe, without proof, how to reduce A to Smith Normal Form.

Let

Ń

$$A = \begin{bmatrix} 6 & 4 & 8 \\ 4 & 4 & -4 \\ 8 & 8 & 4 \\ 2 & 4 & -16 \end{bmatrix} \in {}^{4}\mathbb{Z}^{3}.$$

Find $P \in GL(4,\mathbb{Z})$ and $Q \in GL(3,\mathbb{Z})$ such that PAQ is in Smith Normal Form.

4. (a) State, *without proof*, the classification of finitely generated abelian groups. To what extent is the classification unique?

Let A be a finitely generated abelian group. Show that A is a torsion group if and only if A is finite.

- (b) Classify all abelian groups A of order 2025 by means of both invariant factors and elementary divisors.
 - (i) Find all such distinct A satisfying 135A = 0.
 - (ii) Find all such distinct A such that $A = B \oplus C$ where B and C are non-zero cyclic groups.
- 5. (a) Let $\alpha: V \to V$ be a linear map, where V is a finite-dimensional vector space over a field \mathbb{F} . Explain how V can be considered as a finitely generated torsion module over $\mathbb{F}[x]$.
 - (b) Let $A \in {}^{n}\mathbb{C}^{n}$. Briefly explain, without proof, how the structure theory for finitely generated torsion modules over a principal ideal domain can be used to classify A under similarity. In particular, define the Rational Canonical Form and Jordan Normal Form of A and explain their relation to this classification.
 - (c) Let

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix} \in {}^{4}\mathbb{C}^{4}.$$

By reducing the characteristic matrix of A appropriately, find the Rational Canonical Form and Jordan Normal Form of A for all $\lambda \in \mathbb{C}$.

MATHC331

END OF PAPER

d.

J.L