University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE : MATHM222

UNIT VALUE : 0.50

DATE : 11-MAY-06

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let G be a finite group. Explain what is meant by the order, ord g, of $g \in G$.

Define the kernel $\operatorname{Ker}(\varphi)$ and image $\operatorname{Im}(\varphi)$ of a group homomorphism $\varphi: G \rightarrow H$. State and prove a relationship which holds between $\operatorname{Ker}(\varphi)$ and $\operatorname{Im}(\varphi)$.
Deduce that if $x \in G$ then ord $\varphi(x)$ divides both $|G|$ and $|H|$.
Let $\varphi_{m}: C_{n} \rightarrow C_{n}$ denote the homomorphism $\varphi_{m}\left(x^{t}\right)=x^{m t}$. State a necessary and sufficient condition on m for φ_{m} to be an automorphism.
Describe Aut (C_{30}) explicitly as a product of cyclic groups.
2. Let $\circ: G \times X \rightarrow X$ be a left action of a finite group G on a finite set X, and let $x \in X$. Explain what is meant by
i) the orbit, $\langle x\rangle$, of $x \in X$;
ii) the stability subgroup G_{x}.

Prove that
iii) if $y \in X$ then either $\langle x\rangle=\langle y\rangle$ or $\langle x\rangle \cap\langle y\rangle=\emptyset$, and
iv) show there exists a bijection $\langle x\rangle \leftrightarrow G / G_{x}$.

Explain what is meant by the Class Equation of such an action, and describe it explicitly in the case where $X=G=A_{4}$, the alternating group of order 12, and the action is conjugation $\circ: A_{4} \times A_{4} \rightarrow A_{4} ; g \circ h=g h g^{-1}$.
3. Let p be a prime and P a group of order p^{n} acting on a finite set X with fixed point set X^{P}. Prove that $\left|X^{P}\right| \equiv|X|(\bmod p)$.
Let G be a group of order $k p^{n}$ where k is coprime to p, and let N_{p} be the number of subgroups of order p^{n}. Under the assumption that $N_{p} \neq 0$, show that

$$
N_{p} \equiv 1(\bmod p)
$$

Suppose that the prime p has the form $p=2^{a}-1$; assuming still that $N_{p} \neq 0$ deduce that if G is a group of order $2^{a} p$ then G has either
i) a normal subgroup of order p or ii) a normal subgroup of order 2^{a}.
4. State Sylow's Theorem.

Let p, q be primes such that $q^{n}<p$ and let G be a group of order $p q^{n}$. Assuming Sylow's Theorem, prove that G is a semi-direct product

$$
G \cong P \rtimes Q
$$

where $|P|=p$ and $|Q|=q^{n}$.
Use this result to describe all groups of order 207, stating with justification the number of distinct isomorphism types obtained.
5. Let A be a commutative integral domain which contains a field \mathbb{F} as a subring and is such that $\operatorname{dim}_{\mathbb{F}}(A)$ is finite. Show that A is a field.
Deduce that if $p(x)$ is an irreducible polynomial over a field \mathbb{F} then $\mathbb{F}[x] /(p(x))$ is a field.

If \mathbb{F}_{3} denotes the field with three elements, show that
i) $x^{2}+1$ and $x^{2}+x+2$ are both irreducible over \mathbb{F}_{3}, and that
ii) there is an isomorphism of fields $\mathbb{F}_{3}[x] /\left(x^{2}+1\right) \cong \mathbb{F}_{3}[x] /\left(x^{2}+x+2\right)$.
6. State and prove Eisenstein's Criterion.

Give the complete factorizations of the polynomials below into monic irreducible factors over \mathbb{Q}, justifying your answer in each case.
i) $x^{12}-89 x^{8}-1600$;
ii) $x^{15}+1$.

