UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

٩,

۶

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE	: MATHM222
UNIT VALUE	: 0.50
DATE	: 11-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- Let G be a finite group. Explain what is meant by the order, ord g, of g ∈ G.
 Define the kernel Ker(φ) and image Im(φ) of a group homomorphism φ : G → H.
 State and prove a relationship which holds between Ker(φ) and Im(φ).
 Deduce that if x ∈ G then ord φ(x) divides both |G| and |H|.
 Let φ_m : C_n → C_n denote the homomorphism φ_m(x^t) = x^{mt}. State a necessary and sufficient condition on m for φ_m to be an automorphism.
 Describe Aut(C₃₀) explicitly as a product of cyclic groups.
- 2. Let $\circ : G \times X \to X$ be a left action of a finite group G on a finite set X, and let $x \in X$. Explain what is meant by
 - i) the orbit, $\langle x \rangle$, of $x \in X$;
 - ii) the stability subgroup G_x .
 - Prove that
 - iii) if $y \in X$ then either $\langle x \rangle = \langle y \rangle$ or $\langle x \rangle \cap \langle y \rangle = \emptyset$, and
 - iv) show there exists a bijection $\langle x \rangle \leftrightarrow G/G_x$.

Explain what is meant by the Class Equation of such an action, and describe it explicitly in the case where $X = G = A_4$, the alternating group of order 12, and the action is conjugation $\circ : A_4 \times A_4 \rightarrow A_4$; $g \circ h = ghg^{-1}$.

3. Let p be a prime and P a group of order p^n acting on a finite set X with fixed point set X^P . Prove that $|X^P| \equiv |X| \pmod{p}$.

Let G be a group of order kp^n where k is coprime to p, and let N_p be the number of subgroups of order p^n . Under the assumption that $N_p \neq 0$, show that

$$N_p \equiv 1 \pmod{p}$$
.

Suppose that the prime p has the form $p = 2^a - 1$; assuming still that $N_p \neq 0$ deduce that if G is a group of order $2^a p$ then G has *either*

i) a normal subgroup of order p or ii) a normal subgroup of order 2^a .

MATHM222

PLEASE TURN OVER

4. State Sylow's Theorem.

Let p, q be primes such that $q^n < p$ and let G be a group of order pq^n . Assuming Sylow's Theorem, prove that G is a semi-direct product

$$G \cong P \Join Q$$

where |P| = p and $|Q| = q^n$.

Use this result to describe all groups of order 207, stating with justification the number of distinct isomorphism types obtained.

5. Let A be a commutative integral domain which contains a field \mathbb{F} as a subring and is such that $\dim_{\mathbb{F}}(A)$ is finite. Show that A is a field.

Deduce that if p(x) is an irreducible polynomial over a field \mathbb{F} then $\mathbb{F}[x]/(p(x))$ is a field.

If \mathbb{F}_3 denotes the field with three elements, show that

- i) $x^2 + 1$ and $x^2 + x + 2$ are both irreducible over \mathbb{F}_3 , and that
- ii) there is an isomorphism of fields $\mathbb{F}_3[x]/(x^2+1) \cong \mathbb{F}_3[x]/(x^2+x+2)$.
- 6. State and prove Eisenstein's Criterion.

Give the complete factorizations of the polynomials below into monic irreducible factors over \mathbb{Q} , justifying your answer in each case.

i) $x^{12} - 89x^8 - 1600$; ii) $x^{15} + 1$.

MATHM222

END OF PAPER