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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this ezamination.

1. Let G be a finite group. Explain what is meant by the order, ord g, of g € G.
Define the kernel Ker(y) and image Im(yp) of a group homomorphism ¢ : G — H.
State and prove a relationship which holds between Ker(y) and Im(yp).

Deduce that if £ € G then ord p(z) divides both |G| and |H|.

Let ¢m : Cn — Cy denote the homomorphism ¢, (zt) = 2™. State a necessary and
sufficient condition on m for ¢,, to be an automorphism.

Describe Aut(C3p) explicitly as a product of cyclic groups.

2. Let 0 : G x X — X be a left action of a finite group G on a finite set X, and let
z € X. Explain what is meant by

i) the orbit, (z), of z € X ;

ii) the stability subgroup G;.

Prove that

iii) if y € X then either (z) = (y) or (z)N(y) =0, and
iv) show there exists a bijection (z) < G/G;.

Explain what is meant by the Class Equation of such an action, and describe it
explicitly in the case where X = G = Ay, the alternating group of order 12, and the
action is conjugation o : Ay x Ay — Ay ; goh = ghg™'.

3. Let p be a prime and P a group of order p" acting on a finite set X with fixed point
set XF. Prove that | X?| = |X| (mod p).

Let G be a group of order kp™ where k is coprime to p, and let N, be the number
of subgroups of order p". Under the assumption that N, # 0, show that

N, =1 (mod p).

Suppose that the prime p has the form p = 2% — 1 ; assuming still that N, # 0
deduce that if G is a group of order 2%p then G has either

i) a normal subgroup of order p or ii) a normal subgroup of order 2¢.
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4. State Sylow’s Theorem.

Let p, ¢ be primes such that ¢" < p and let G be a group of order pg®. Assuming
Sylow’s Theorem, prove that G is a semi-direct product

G = PXQ
where |P| = p and |Q| = ¢".

Use this result to describe all groups of order 207, stating with justification the
number of distinct isomorphism types obtained.

5. Let A be a commutative integral domain which contains a field F as a subring and
is such that dimg(A) is finite. Show that A is a field.

Deduce that if p(z) is an irreducible polynomial over a field F then F[z]/(p(z)) is a
field.

If F3 denotes the field with three elements, show that
i) 2+ 1 and 2% + z + 2 are both irreducible over F3, and that

ii) there is an isomorphism of fields Fs[z]/(z? + 1) = F3[z]/(z? + z + 2).

6. State and prove Eisenstein’s Criterion.

Give the complete factorizations of the polynomials below into monic irreducible
factors over Q, justifying your answer in each case.

i) z'2 - 8928 — 1600 ;
i) z15 + 1.
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