UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

¥

8. F F

۲.

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE	: MATHM222
UNIT VALUE	: 0.50
DATE	: 16-MAY-05
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Let G be a finite group. Explain what is meant by the order, $\operatorname{ord}(g)$, of $g \in G$.

If x is a generator of the cyclic group C_n of order n, show that, for $1 \leq m \leq n-1$,

$$\operatorname{ord}(x^m) = \frac{n}{\operatorname{HCF}(m,n)}$$

Let $\varphi_m : C_n \to C_n$ denote the homomorphism $\varphi_m(x^t) = x^{mt}$. Derive a necessary and sufficient condition on m for φ_m to be an automorphism.

Define the Euler totient function $\Phi(n)$, and prove that if p_1, \ldots, p_m are the distinct primes dividing the positive integer n then

$$\Phi(n)=n\left(1-\frac{1}{p_1}\right)\ldots\left(1-\frac{1}{p_m}\right).$$

Hence or otherwise, find the order of $Aut(C_{2700})$.

- 2. Let K be a group ; explain how the set Aut(K) of automorphisms of K forms a group, and describe explicitly
 - (i) the group structure on $Aut(C_{13})$ and
 - (ii) all group homomorphisms $h: C_3 \to Aut(C_{13})$.

If $h: Q \to \operatorname{Aut}(K)$ is a group homomorphism, explain what is meant by the *semi*direct product

$$K \Join_h Q$$
.

If G is a finite group with subgroups K and Q, state and prove a criterion which allows one to assert that G is a semi-direct product of the above form.

Decide with proof how many isomorphically distinct groups there are of the form

$$C_{13} \Join_h C_3$$
.

and describe each of them in terms of generators and relations.

MATHM222

PLEASE TURN OVER

- 3. Let $\circ : G \times X \to X$ be a left action of a finite group G on a finite set X. Explain what is meant by
 - i) the orbit $\langle x \rangle$ of $x \in G$;
 - ii) the stability subgroup G_x of $x \in X$;
 - iii) the quotient set G/G_x .

Show that, for any $x \in X$ there exists a bijection

$$\langle x \rangle \iff G/G_x$$

Explain what is meant by the *class equation* of such an action (in each of its forms). Furthermore describe the class equation explicitly in the case where $X = G = D_{10}$, the dihedral group of order 10, and the action is *conjugation*

$$\circ : D_{10} \times D_{10} \to D_{10} ; g \circ h = ghg^{-1}.$$

4. Let p be a prime, and let G be a group of order p^n $(n \ge 1)$ acting on a finite set X. Define the *fixed point set* X^G , and prove that

$$|X| \equiv |X^G| \pmod{p}.$$

For any integer $k \ge 1$, by means of a suitable action of G show that

$$\binom{kp^n}{p^n} \equiv k \pmod{p}.$$

Let p be a prime, and let G be a group of order kp^n where $n \ge 1$ and k is coprime to p, and let N_p be the number of subgroups of G of order p^n . Assuming that $N_p \ge 1$, and stating clearly any auxiliary results that you employ, show that

$$N_p \equiv 1 \pmod{p}.$$

MATHM222

CONTINUED

ы

Ŋ

5. Let \mathbf{F} be a field and let G be a finite subgroup of the multiplicative group \mathbf{F}^* . Prove that G is cyclic.

Show that $p(x) = x^2 + 3x + 3$ is irreducible over the field \mathbf{F}_5 .

Let G denote the unit group

14

$$G = [\mathbf{F}_5[x]/(x^2 + 3x + 3)]^*.$$

By showing that $x^6 = 3$ in $\mathbf{F}_5[x]/(x^2 + 3x + 3)$, or otherwise, describe an explicit isomorphism $G \cong C_n$, for some *n*, and state the value of *n*.

6. Let a(x) be a polynomial with integer ocefficients. Define the content C(a) of a(x). If b(x) is also an integral polynomial prove that

$$C(a) = C(b) = 1 \implies C(ab) = 1.$$

In each case below, decide whether or not the given polynomial is irreducible over \mathbf{Q} , jusifying your answer in each case. If the polynomial is not irreducible, give its complete factorization into \mathbf{Q} -irreducible factors.

(i) $x^{12} - 18x^6 - 175$; (ii) $x^6 + x^3 + 1$. (iii) $x^{10} + 1$.

MATHM222

END OF PAPER