University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE : MATHM222

UNIT VALUE : 0.50

DATE : 16-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let G be a finite group. Explain what is meant by the order, ord (g), of $g \in G$.

If x is a generator of the cyclic group C_{n} of order n, show that, for $1 \leqslant m \leqslant n-1$,

$$
\operatorname{ord}\left(x^{m}\right)=\frac{n}{\operatorname{HCF}(m, n)}
$$

Let $\varphi_{m}: C_{n} \rightarrow C_{n}$ denote the homomorphism $\varphi_{m}\left(x^{t}\right)=x^{m t}$. Derive a necessary and sufficient condition on m for φ_{m} to be an automorphism.
Define the Euler totient function $\Phi(n)$, and prove that if p_{1}, \ldots, p_{m} are the distinct primes dividing the positive integer n then

$$
\Phi(n)=n\left(1-\frac{1}{p_{1}}\right) \ldots\left(1-\frac{1}{p_{m}}\right) .
$$

Hence or otherwise, find the order of $\operatorname{Aut}\left(C_{2700}\right)$.
2. Let K be a group ; explain how the set $\operatorname{Aut}(K)$ of automorphisms of K forms a group, and describe explicitly
(i) the group structure on $\operatorname{Aut}\left(C_{13}\right)$ and
(ii) all group homomorphisms $h: C_{3} \rightarrow \operatorname{Aut}\left(C_{13}\right)$.

If $h: Q \rightarrow \operatorname{Aut}(K)$ is a group homomorphism, explain what is meant by the semidirect product

$$
K \rtimes_{h} Q .
$$

If G is a finite group with subgroups K and Q, state and prove a criterion which allows one to assert that G is a semi-direct product of the above form.
Decide with proof how many isomorphically distinct groups there are of the form

$$
C_{13} \searrow_{h} C_{3} .
$$

and describe each of them in terms of generators and relations.
3. Let $\circ: G \times X \rightarrow X$ be a left action of a finite group G on a finite set X. Explain what is meant by
i) the orbit $\langle x\rangle$ of $x \in G$;
ii) the stability subgroup G_{x} of $x \in X$;
iii) the quotient set G / G_{x}.

Show that, for any $x \in X$ there exists a bijection

$$
\langle x\rangle \longleftrightarrow G / G_{x}
$$

Explain what is meant by the class equation of such an action (in each of its forms).
Furthermore describe the class equation explicitly in the case where $X=G=D_{10}$, the dihedral group of order 10, and the action is conjugation

$$
\circ: D_{10} \times D_{10} \rightarrow D_{10} ; g \circ h=g h g^{-1} .
$$

4. Let p be a prime, and let G be a group of order $p^{n}(n \geqslant 1)$ acting on a finite set X. Define the fixed point set X^{G}, and prove that

$$
|X| \equiv\left|X^{G}\right| \quad(\bmod p)
$$

For any integer $k \geqslant 1$, by means of a suitable action of G show that

$$
\binom{k p^{n}}{p^{n}} \equiv k(\bmod p)
$$

Let p be a prime, and let G be a group of order $k p^{n}$ where $n \geqslant 1$ and k is coprime to p, and let N_{p} be the number of subgroups of G of order p^{n}. Assuming that $N_{p} \geqslant 1$, and stating clearly any auxiliary results that you employ, show that

$$
N_{p} \equiv 1 \quad(\bmod p)
$$

5. Let \mathbf{F} be a field and let G be a finite subgroup of the multiplicative group \mathbf{F}^{*}. Prove that G is cyclic.
Show that $p(x)=x^{2}+3 x+3$ is irreducible over the field \mathbf{F}_{5}.
Let G denote the unit group

$$
G=\left[\mathbf{F}_{5}[x] /\left(x^{2}+3 x+3\right)\right]^{*}
$$

By showing that $x^{6}=3$ in $\mathbf{F}_{5}[x] /\left(x^{2}+3 x+3\right)$, or otherwise, describe an explicit isomorphism $G \cong C_{n}$, for some n, and state the value of n.
6. Let $a(x)$ be a polynomial with integer ocefficients. Define the content $C(a)$ of $a(x)$. If $b(x)$ is also an integral polynomial prove that

$$
C(a)=C(b)=1 \quad \Longrightarrow \quad C(a b)=1 .
$$

In each case below, decide whether or not the given polynomial is irreducible over \mathbf{Q}, jusifying your answer in each case. If the polynomial is not irreducible, give its complete factorization into \mathbf{Q}-irreducible factors.
(i) $x^{12}-18 x^{6}-175$;
(ii) $x^{6}+x^{3}+1$.
(iii) $x^{10}+1$.

