

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

,

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE	: MATHM222
UNIT VALUE	: 0.50
DATE	: 13-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

04-C0958-3-90 © 2004 University College London

TURN OVER

ŧ

ж.

All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is not permitted in this examination.

- Let G be a finite group. Explain what is meant by the order, ord g, of g ∈ G. Define the kernel Ker(φ) and image Im(φ) of a group homomorphism φ : G → H. State and prove a relationship which holds between Ker(φ) and Im(φ). Deduce that if x ∈ G then ord φ(x) divides both |G| and |H|. Let φ_m : C_n → C_n denote the homomorphism φ_m(x^t) = x^{mt}. State a necessary and sufficient condition on m for φ_m to be an automorphism. Describe Aut(C₁₅) explicitly as a product of cyclic groups.
- 2. Let K, Q be groups. Explain what is meant by a semi-direct product

$$K \Join_{\varphi} Q.$$

If K, Q are subgroups of the finite group G, state and prove a criterion which allows one to recognize G as such a semidirect product.

List all homomorphisms $\varphi: C_5 \to \operatorname{Aut}(C_{22})$.

Hence list, with explanation, the isomorphically distinct groups of the form

$$C_{22} \bigotimes_{\mathcal{O}} C_5$$
.

3. Let $\circ : G \times X \to X$ be a left action of a finite group G on a finite set X, and let $x \in X$. Explain what is meant by

(i) the fixed point set X^G ; (ii) the orbit $\langle x \rangle$; (iii) the stability subgroup $\operatorname{Stab}_G(x)$. Explain, with proof, what is meant by the Class Equation of such an action in both its set-theoretic and numerical forms.

Describe the numerical form explicitly when $X = G = A_4$, the alternating group on 4 letters, and the action is conjugation $\circ : A_4 \times A_4 \to A_4$; $g \circ h = ghg^{-1}$.

Let p be a prime and P a group of order p^n acting on a finite set X with fixed point set X^P . Prove that $|X^P| \equiv |X| \pmod{p}$.

MATHM222

PLEASE TURN OVER

11

ļ.

4. Let p be a prime, and let G be a group of order kp^n where $n \ge 1$ and k is coprime to p, and let N_p be the number of subgroups of G of order p^n . Assuming that $N_p \ge 1$, show that

$$N_p \equiv 1 \pmod{p}$$
.

Let p, q be primes such that $q^n < p$ and let G be a group of order pq^n . Stating any further assumptions you are making, prove that G is a semi-direct product

$$G \cong P \Join Q$$

where |P| = p and $|Q| = q^n$.

4 1

Hence describe all groups of order 725.

5. Let p(x) be an irreducible polynomial of degree $n \ge 1$ over a field \mathbb{F} ; show that $\mathbb{F}[x]/(p(x))$ is an integral domain.

State a relationship between $\dim_{\mathbb{F}} \mathbb{F}[x]/(p(x))$ and n, and explain why $\mathbb{F}[x]/(p(x))$ is a field.

Let \mathbb{F}_3 denote the field with three elements ;

i) show that $x^2 + x + 2$ is irreducible over \mathbb{F}_3 ;

ii) by finding a generator, show explicitly that the multiplicative group $(\mathbb{F}_3[x]/(x^2+x+2))^*$ is cyclic.

6. State and prove Eisenstein's Criterion.

Give the complete factorisations of the polynomials below into monic irreducible factors over \mathbb{Q} , justifying your answer in each case.

i)
$$x^{22} - 3x^{11} + 2$$
;

ii)
$$x^4 - 4x^3 + 6x^2 + x + 1$$
.

Write down the complete factorisations of $x^{15} - 1$ and $x^{30} - 1$ into monic irreducible factors over \mathbb{Q} . Hence or otherwise, give the corresponding factorisation of $x^{15} + 1$.

MATHM222

END OF PAPER

ł