University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE : MATHM222

UNIT VALUE : 0.50

DATE : 13-MAY-04

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let G be a finite group. Explain what is meant by the order, ord g, of $g \in G$.

Define the kernel $\operatorname{Ker}(\varphi)$ and image $\operatorname{Im}(\varphi)$ of a group homomorphism $\varphi: G \rightarrow H$.
State and prove a relationship which holds between $\operatorname{Ker}(\varphi)$ and $\operatorname{Im}(\varphi)$.
Deduce that if $x \in G$ then ord $\varphi(x)$ divides both $|G|$ and $|H|$.
Let $\varphi_{m}: C_{n} \rightarrow C_{n}$ denote the homomorphism $\varphi_{m}\left(x^{t}\right)=x^{m t}$. State a necessary and sufficient condition on m for φ_{m} to be an automorphism.
Describe $\operatorname{Aut}\left(C_{15}\right)$ explicitly as a product of cyclic groups.
2. Let K, Q be groups. Explain what is meant by a semi-direct product

$$
K \rtimes_{\varphi} Q
$$

If K, Q are subgroups of the finite group G, state and prove a criterion which allows one to recognize G as such a semidirect product.
List all homomorphisms $\varphi: C_{5} \rightarrow \operatorname{Aut}\left(C_{22}\right)$.
Hence list, with explanation, the isomorphically distinct groups of the form

$$
C_{22} \rtimes_{\varphi} C_{5}
$$

3. Let $\circ: G \times X \rightarrow X$ be a left action of a finite group G on a finite set X, and let $x \in X$. Explain what is meant by
(i) the fixed point set X^{G}; (ii) the orbit $\langle x\rangle$; (iii) the stability subgroup $\operatorname{Stab}_{G}(x)$. Explain, with proof, what is meant by the Class Equation of such an action in both its set-theoretic and numerical forms.
Describe the numerical form explicitly when $X=G=A_{4}$, the alternating group on 4 letters, and the action is conjugation $\circ: A_{4} \times A_{4} \rightarrow A_{4} ; g \circ h=g h g^{-1}$.
Let p be a prime and P a group of order p^{n} acting on a finite set X with fixed point set X^{P}. Prove that $\left|X^{P}\right| \equiv|X|(\bmod p)$.
4. Let p be a prime, and let G be a group of order $k p^{n}$ where $n \geqslant 1$ and k is coprime to p, and let N_{p} be the number of subgroups of G of order p^{n}. Assuming that $N_{p} \geqslant 1$, show that

$$
N_{p} \equiv 1 \quad(\bmod p)
$$

Let p, q be primes such that $q^{n}<p$ and let G be a group of order $p q^{n}$. Stating any further assumptions you are making, prove that G is a semi-direct product

$$
G \cong P \rtimes Q
$$

where $|P|=p$ and $|Q|=q^{n}$.
Hence describe all groups of order 725 .
5. Let $p(x)$ be an irreducible polynomial of degree $n \geqslant 1$ over a field \mathbb{F}; show that $\mathbb{F}[x] /(p(x))$ is an integral domain.
State a relationship between $\operatorname{dim}_{\mathbb{F}} \mathbb{F}[x] /(p(x))$ and n, and explain why $\mathbb{F}[x] /(p(x))$ is a field.

Let \mathbb{F}_{3} denote the field with three elements ;
i) show that $x^{2}+x+2$ is irreducible over \mathbb{F}_{3};
ii) by finding a generator, show explicitly that the multiplicative group $\left(\mathbb{F}_{3}[x] /\left(x^{2}+x+2\right)\right)^{*}$ is cyclic.
6. State and prove Eisenstein's Criterion.

Give the complete factorisations of the polynomials below into monic irreducible factors over \mathbb{Q}, justifying your answer in each case.
i) $x^{22}-3 x^{11}+2$;
ii) $x^{4}-4 x^{3}+6 x^{2}+x+1$.

Write down the complete factorisations of $x^{15}-1$ and $x^{30}-1$ into monic irreducible factors over \mathbb{Q}. Hence or otherwise, give the corresponding factorisation of $x^{15}+1$.

