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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. Let G be a finite group. Explain what is meant by the order, ord g, of g € G.
Define the kernel Ker(p) and image Im(yp) of a group homomorphism ¢ : G — H.
State and prove a relationship which holds between Ker(y) and Im(ep).

Deduce that if 2 € G then ord ¢(z) divides both |G| and |H].

Let @p, : Cp — Cy denote the homomorphism ¢, (2!) = 2™. State a necessary and
sufficient condition on m for ¢m to be an automorphism.

Describe Aut(Cjs) explicitly as a product of cyclic groups.

2. Let K, Q be groups. Explain what is meant by a semi-direct product

K .
>4¢Q
If K, Q are subgroups of the finite group G, state and prove a criterion which
allows one to recognize G as such a semidirect product.
List all homomorphisms ¢ : C5 — Aut(Chy,).

Hence list, with explanation, the isomorphically distinct groups of the form

Co )d(PCs .

3. Let 0: G x X — X be a left action of a finite group G on a finite set X , and let
z € X. Explain what is meant by

(i) the fixed point set X€ ; (ii) the orbit (z) ; (iii) the stability subgroup Stabg(z).

Explain, with proof, what is meant by the Class Equation of such an action in both
its set-theoretic and numerical forms. )

Describe the numerical form explicitly when X = G = Ay, the alternating group on
4 letters, and the action is conjugation o : Ay x Ay — Ay; goh = ghg=1.

Let p be a prime and P a group of order p® acting on a finite set X with fixed point
set XP. Prove that | X”| = |X| (mod p).
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4. Let p be a prime, and let G be a group of order kp”® where n > 1 and k is coprime to
p, and let N, be the number of subgroups of G of order p™. Assuming that N, > 1,
show that

N,= 1 (mod p).

Let p, g be primes such that ¢" < p and let G be a group of order pg". Stating any
further assumptions you are making, prove that G is a semi-direct product

G = PYQ

where |P| = p and |Q| = ¢™.
Hence describe all groups of order 725.

9. Let p(z) be an irreducible polynomial of degree n > 1 over a field F; show that
Flz]/(p(x)) is an integral domain.

State a relationship between dimygF[z]/(p(2)) and n, and explain why Flz]/(p(z)) is
a field.

Let F3 denote the field with three elements ;
i) show that 22 + 2 + 2 is irreducible over F ;

ii) by finding a generator, show explicitly that the multiplicative group (F3[z]/(z? + z + 2))”
is cyclic.

6. State and prove Eisenstein’s Criterion.

Give the complete factorisations of the polynomials below into monic irreducible
factors over Q, justifying your answer in each case.

i) 22 - 321142 ;

i) z -4z + 622+ 2+ 1.

Write down the complete factorisations of z!®> — 1 and z3° — 1 into monic irreducible
factors over Q. Hence or otherwise, give the corresponding factorisation of z'° + 1.
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