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All guestions may be attempted. but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. Let K beagroup ; describe the group structure on the set Aut(X) of automorphisms
of K.

If ¢ : @ = Aut(K) is a group homomorphism, explain what is meant by the semi-
direct product

K ><]Q0Q ,
and show it is a group.
Describe explicitly
(i) the group structure on Aut(Cys) ;
(ii) all homomorphisms ¢ : C; — Aut(Cas).

How many isomorphically distinct groups are there of the form

C Cy ?
28><](p 3

2. Let o : G x X — X be a left action of a finite group G on a finite set X, and let
z € X. Explain what is meant by

(i) the orbit, (z), of z ;
(ii) the stability group Stabg(z) of = .

Explain, with proof, what is meant by the class equation of the action in both its
set-theoretic and numerical forms.

Let G = A4, the alternating group on 4 letters, and let G act on itself by conjugation

o: Ay x Ay — Ay; goh=ghg™.

Give an explicit description of
(i) the orbits in this action ;
(ii) the stability subgroup of a representative element in each orbit |

(iii) both forms of the class equation.
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3. Let p be a prime, and let G be a group of order p™ (n > 1) acting on a finite set X.
Define the fized point set X<, and prove that

1 X| =X (mod p).

Deduce that the centre Z(G) of G is nontrivial.

By means of a suitable action, for any integer £ > 1 show that

(kpn) =k (mod p).

pTL

4. Let P, @ be subgroups of a group G; explain what is meant by saying that P
normalizes Q. Show that, when P normalizes (), there is a group isomorphism

PQ/Q = P/(PNQ).

Let p be a prime, and let G be a group of order kp™ where n > 1 and k is coprime to
p, and let N, be the number of subgroups of G of order p”. Assuming that N, > 1,
show that

Ny= 1 (modp).
Deduce that if G is a group of order 153 then
(1) G has a normal subgroup of order 17 ;
(ii) G is abelian.

How many isomorphically distinct groups of order 153 are there 7

5. Let F be a field and let G be a finite subgroup of the multiplicative group F*. Prove
that G is cyclic.

Show that p(z) = 2% + 3z + 3 is irreducible over the field F.
Let G denote the unit group

G = [Fslz]/(z® + 3z + 3)]*.

Show that G = (,,, for some n, and state the value of n.

By showing that z% = 3 in F5[z]/(2? + 3z + 3), or otherwise, find a generator for G.
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6. State Eisenstein’s criterion for irreducibility.
State and prove Gauss’ Lemma.
In each case below, decide whether or not the given polynomial
is irreducible over Q;
(1) z* + 72% + 212% + 222 + 10 ;
(ii) z*¢ — 162® + 63.

If the polynomial is not irreducible, give its complete factorization into Q-irreducible
factors.
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