University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE	$:$ MATHM222
UNIT VALUE	$: 0.50$
DATE	$: \mathbf{3 0 - A P R} \mathbf{0 3}$
TIME	$: \mathbf{1 4 . 3 0}$
TIME ALLOWED	$: \mathbf{2 H o u r s}$

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. Let K be a group ; describe the group structure on the set $\operatorname{Aut}(K)$ of automorphisms of K.
If $\varphi: Q \rightarrow \operatorname{Aut}(K)$ is a group homomorphism, explain what is meant by the semidirect product

$$
K \rtimes_{\varphi} Q
$$

and show it is a group.
Describe explicitly
(i) the group structure on $\operatorname{Aut}\left(C_{28}\right)$;
(ii) all homomorphisms $\varphi: C_{3} \rightarrow \operatorname{Aut}\left(C_{28}\right)$.

How many isomorphically distinct groups are there of the form

$$
C_{28} \rtimes_{\varphi} C_{3} \quad ?
$$

2. Let $\circ: G \times X \rightarrow X$ be a left action of a finite group G on a finite set X, and let $x \in X$. Explain what is meant by
(i) the orbit, $\langle x\rangle$, of x;
(ii) the stability group $\operatorname{Stab}_{G}(x)$ of x.

Explain, with proof, what is meant by the class equation of the action in both its set-theoretic and numerical forms.
Let $G=A_{4}$, the alternating group on 4 letters, and let G act on itself by conjugation

$$
\circ: A_{4} \times A_{4} \rightarrow A_{4} ; g \circ h=g h g^{-1} .
$$

Give an explicit description of
(i) the orbits in this action ;
(ii) the stability subgroup of a representative element in each orbit ;
(iii) both forms of the class equation.
3. Let p be a prime, and let G be a group of order $p^{n}(n \geqslant 1)$ acting on a finite set X. Define the fixed point set X^{G}, and prove that

$$
|X| \equiv\left|X^{G}\right| \quad(\bmod p)
$$

Deduce that the centre $Z(G)$ of G is nontrivial.
By means of a suitable action, for any integer $k \geqslant 1$ show that

$$
\binom{k p^{n}}{p^{n}} \equiv k(\bmod p)
$$

4. Let P, Q be subgroups of a group G; explain what is meant by saying that P normalizes Q. Show that, when P normalizes Q, there is a group isomorphism

$$
P Q / Q \cong P /(P \cap Q)
$$

Let p be a prime, and let G be a group of order $k p^{n}$ where $n \geqslant 1$ and k is coprime to p, and let N_{p} be the number of subgroups of G of order p^{n}. Assuming that $N_{p} \geqslant 1$, show that

$$
N_{p} \equiv 1 \quad(\bmod p)
$$

Deduce that if G is a group of order 153 then
(i) G has a normal subgroup of order 17 ;
(ii) G is abelian.

How many isomorphically distinct groups of order 153 are there?
5. Let \mathbf{F} be a field and let G be a finite subgroup of the multiplicative group \mathbf{F}^{*}. Prove that G is cyclic.
Show that $p(x)=x^{2}+3 x+3$ is irreducible over the field \mathbf{F}_{5}.
Let G denote the unit group

$$
G=\left[\mathbf{F}_{5}[x] /\left(x^{2}+3 x+3\right)\right]^{*}
$$

Show that $G \cong C_{n}$, for some n, and state the value of n.
By showing that $x^{6}=3$ in $\mathbf{F}_{5}[x] /\left(x^{2}+3 x+3\right)$, or otherwise, find a generator for G.
6. State Eisenstein's criterion for irreducibility.

State and prove Gauss' Lemma.
In each case below, decide whether or not the given polynomial is irreducible over \mathbf{Q};
(i) $x^{4}+7 x^{3}+21 x^{2}+22 x+10$;
(ii) $x^{16}-16 x^{8}+63$.

If the polynomial is not irreducible, give its complete factorization into \mathbf{Q}-irreducible factors.

