UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Å

Mathematics M222: Algebra 4: Groups and Rings

COURSE CODE	: MATHM222
UNIT VALUE	: 0.50
DATE	: 30-APR-03
TIME	: 14.30
TIME ALLOWED	: 2 Hours

03-C0951-3-60 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

1. Let K be a group ; describe the group structure on the set Aut(K) of automorphisms of K.

If $\varphi: Q \to \operatorname{Aut}(K)$ is a group homomorphism, explain what is meant by the *semi-direct product*

$$K
ightarrow _{arphi} Q$$
 ,

and show it is a group.

Describe explicitly

(i) the group structure on $Aut(C_{28})$;

(ii) all homomorphisms $\varphi: C_3 \to \operatorname{Aut}(C_{28})$.

How many isomorphically distinct groups are there of the form

$$C_{28} \Join_{\varphi} C_3$$
 ?

- 2. Let $\circ : G \times X \to X$ be a left action of a finite group G on a finite set X, and let $x \in X$. Explain what is meant by
 - (i) the orbit, $\langle x \rangle$, of x;
 - (ii) the stability group $\operatorname{Stab}_G(x)$ of x.

Explain, with proof, what is meant by the *class equation* of the action in both its set-theoretic and numerical forms.

Let $G = A_4$, the alternating group on 4 letters, and let G act on itself by *conjugation*

$$\circ : A_4 \times A_4 \to A_4 ; g \circ h = ghg^{-1}.$$

Give an explicit description of

- (i) the orbits in this action ;
- (ii) the stability subgroup of a representative element in each orbit ;
- (iii) both forms of the class equation.

MATHM222

PLEASE TURN OVER

3. Let p be a prime, and let G be a group of order p^n $(n \ge 1)$ acting on a finite set X. Define the *fixed point set* X^G , and prove that

$$|X| \equiv |X^G| \pmod{p}.$$

Deduce that the centre Z(G) of G is nontrivial.

By means of a suitable action, for any integer $k \ge 1$ show that

$$\binom{kp^n}{p^n} \equiv k \pmod{p}.$$

4. Let P, Q be subgroups of a group G; explain what is meant by saying that P normalizes Q. Show that, when P normalizes Q, there is a group isomorphism

$$PQ/Q \cong P/(P \cap Q).$$

Let p be a prime, and let G be a group of order kp^n where $n \ge 1$ and k is coprime to p, and let N_p be the number of subgroups of G of order p^n . Assuming that $N_p \ge 1$, show that

$$N_p \equiv 1 \pmod{p}.$$

Deduce that if G is a group of order 153 then

- (i) G has a normal subgroup of order 17;
- (ii) G is abelian.

How many isomorphically distinct groups of order 153 are there?

5. Let \mathbf{F} be a field and let G be a finite subgroup of the multiplicative group \mathbf{F}^* . Prove that G is cyclic.

Show that $p(x) = x^2 + 3x + 3$ is irreducible over the field \mathbf{F}_5 .

Let G denote the unit group

$$G = [\mathbf{F}_5[x]/(x^2 + 3x + 3)]^*.$$

Show that $G \cong C_n$, for some *n*, and state the value of *n*.

By showing that $x^6 = 3$ in $\mathbf{F}_5[x]/(x^2 + 3x + 3)$, or otherwise, find a generator for G.

MATHM222

CONTINUED

6. State Eisenstein's criterion for irreducibility.

State and prove Gauss' Lemma.

In each case below, decide whether or not the given polynomial

is irreducible over \mathbf{Q} ;

- (i) $x^4 + 7x^3 + 21x^2 + 22x + 10$;
- (ii) $x^{16} 16x^8 + 63$.

If the polynomial is not irreducible, give its complete factorization into \mathbf{Q} -irreducible factors.

MATHM222

END OF PAPER