UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ę

è

Mathematics M221: Algebra 3: Further Linear Algebra

COURSE CODE	: MATHM221
UNIT VALUE	: 0.50
DATE	: 17-MAY-06
TIME	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

1. (a) Find integers h and k such that

$$9h + 11k = 1.$$

- (b) State and prove the Chinese Remainder Theorem.
- (c) Find the unique $x \in \mathbb{Z}/99$ such that

$$x \equiv 3 \mod 9$$
 and $x \equiv 7 \mod 11$.

- (d) Prove that there are infinitely many prime numbers congruent to 2 modulo 3.
- (a) (i) Find hcf(f,g) in Q[X] when f(X) = X³ − 1 and g(X) = X² + 1.
 (ii) Find h, k ∈ Q[X] such that hcf(f,g) = hf + kg.
 - (b) Let k be a field and $f \in k[X]$. Define the following:
 - (i) f is irreducible,
 - (ii) f is monic,
 - (iii) $\deg(f)$.
 - (c) Let $p \in k[X]$ be an irreducible polynomial. Prove that if p|fg then p|f or p|g.
 - (d) Suppose that p_1, \ldots, p_r and q_1, \ldots, q_s are irreducible monic polynomials such that

$$p_1p_2\cdots p_r=q_1q_2\cdots q_s.$$

Prove that r = s and (after reordering if necessary) $p_i = q_i$ for i = 1, ..., r.

MATHM221

PLEASE TURN OVER

- 3. (a) Define the *minimal polynomial* of a linear map.
 - (b) Prove that the minimal polynomial exists and is unique.
 - (c) Explain what is meant by a generalized eigenspace and state (but do not prove) the primary decomposition theorem.
 - (d) Prove that a matrix is diagonalizable if and only if its minimal polynomial is a product of distinct linear factors.
 - (e) Find the minimal polynomial of the matrix

$$A = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Hence determine whether A is diagonalizable over \mathbb{Q} .

- 4. (a) Define the following terms.
 - (i) Jordan block matrix.
 - (ii) Jordan basis.
 - (b) In each of the following cases find the Jordan normal form of the matrix A.
 - (i) $ch_A(X) = (X 1)^2$, $m_A(X) = X 1$.
 - (ii) $\operatorname{ch}_A(X) = m_A(X) = (X 3)^{10}$.
 - (iii) $\operatorname{ch}_A(X) = (X 6)^3$, $m_A(X) = (X 6)^2$.
 - (iv) $\operatorname{ch}_A(X) = (X-1)^{10}(X-2)^{10}, \ m_A(X) = (X-1)^6(X-2)^4, \ \operatorname{null}(A-I) = 4, \ \operatorname{rank}(A-2I) = 16 \ \operatorname{and} \ \operatorname{null}((A-2I)^2) = 8.$
 - (c) Let V be the vector space of polynomials of degree at most two

$$V = \{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{C}\}.$$

Let $\alpha: V \to V$ be the linear map defined by

$$\alpha(f) = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} - 4f.$$

Find the Jordan canonical form of α .

MATHM221

CONTINUED

13

- 5. (a) State and prove Sylvester's Law of Inertia.
 - (b) Consider the following quadratic forms:

$$q_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x^2 + 2xy + 2xz + 3y^2 + 2yz + 2z^2,$$
$$q_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2x^2 + 8xy + 4xz + 2y^2 + 8yz + 6z^2.$$

By finding their canonical forms, determine whether q_1 and q_2 are

- (i) congruent over \mathbb{R} ;
- (ii) congruent over \mathbb{C} .
- 6. (a) Let V be a vector space over \mathbb{C} . What does it mean to say that $\langle \cdot, \cdot \rangle$ is a positive definite Hermitian form on V?
 - (b) Using the Gram-Schmidt process, find an orthonormal basis for the following vector space with respect to the given inner product:

$$V = \{a + bx : a, b \in \mathbb{C}\}, \quad \langle f, g \rangle = \int_0^1 f(x) \overline{g(x)} dx$$

- (c) Let V be a vector space over \mathbb{C} with a positive definite Hermitian inner product and let $T: V \to V$ be a self-adjoint linear map.
 - (i) Show that if $U \subseteq V$ is an invariant subspace, then its orthogonal complement, U^{\perp} , is also invariant.
 - (ii) State and prove the Spectral Theorem.

MATHM221

END OF PAPER