UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M221: Algebra 3: Further Linear Algebra

COURSE CODE : MATHM221

UNIT VALUE : 0.50

DATE : 18-MAY-05

TIME : 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) (i) Prove that there exist infinitely many prime numbers.
(ii) Show that if p_{k} is the $k^{\text {th }}$ prime then $p_{k}<2^{2^{k}}$. (You may wish to use induction on k.)
(b) State Fermat's Little Theorem and calculate
(i) $4^{44} \bmod 47$,
(ii) $4^{29} 5^{60} \bmod 61$.
(c) If $a \geqslant 2$ and $p \geqslant 2$ are integers satisfying $a^{p-1} \equiv 1 \bmod p$ calculate $\operatorname{gcd}(a, p)$.
2. (a) Let \mathbb{F} be a field. Prove that if $a, b \in \mathbb{F}[x]$ and $b \neq 0$ then there exist unique polynomials $q, r \in \mathbb{F}[x]$ such that $\operatorname{deg}(r)<\operatorname{deg}(b)$ and $a=b q+r$.
(b) (i) If $f, g \in \mathbb{F}[x]$ define $\operatorname{gcd}(f, g)$.
(ii) Find $\operatorname{gcd}(f, g)$ when $f(x)=x^{4}-1$ and $g(x)=x^{2}+x-2$ belong to $\mathbb{Q}[x]$.
(iii) Find $h, k \in \mathbb{Q}[x]$ such that $\operatorname{gcd}(f, g)=h a+k b$.
(c) Find the minimal polynomial of the matrix

$$
A=\left[\begin{array}{lll}
2 & 6 & 3 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Calculate

$$
B=A^{102}-4 A^{101}+4 A^{100}+A-I .
$$

3. (a) Let V be a vector space over a field \mathbb{F}. Define what it means to say that $f: V \times V \rightarrow \mathbb{F}$ is a symmetric bilinear form.
(b) Let A be a real symmetric matrix. Prove that if A is congruent to both $B=\operatorname{diag}\left(I_{p},-I_{q}, 0\right)$ and $C=\operatorname{diag}\left(I_{j},-I_{k}, 0\right)$ then $B=C$.
(c) Find the real and complex canonical forms of the following matrices

$$
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Hence or otherwise decide whether A and B are
(i) congruent over \mathbb{R},
(ii) congruent over \mathbb{C}.
4. (a) Let V be a vector space over \mathbb{C}. What does it mean to say that $<,>$ is an inner product on V ?
(b) (i) Define what it means to say that $A \in M_{n}(\mathbb{C})$ is hermitian.
(ii) Prove that if $\lambda \in \mathbb{C}$ is an eigenvalue of a hermitian matrix $A \in M_{n}(\mathbb{C})$ then λ is real.
(iii) State the Spectral Theorem.
(iv) Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Find an orthogonal matrix P such that $P^{T} A P=P^{-1} A P$ is diagonal.
5. (a) (i) State the Primary Decomposition theorem (giving definitions of the minimal polynomial and generalised eigenspaces).
(ii) Prove that if V is a finite dimensional vector space over a field \mathbb{F} and $\alpha: V \rightarrow V$ is a linear map then α is diagonalisable iff $m_{\alpha}(x)$ is a product of distinct linear factors.
(b) Let V be the real vector space of functions with basis

$$
\mathcal{E}=\{\cos x, \sin x, \cos 2 x, \sin 2 x\}
$$

Define $D: V \rightarrow V$ by $D(f)=\mathrm{d} f / \mathrm{d} x$.
(i) Calculate $[D]_{\mathcal{E}}$, the matrix representing D with respect to \mathcal{E}.
(ii) Express the minimal polynomial of D as the product of monic irreducibles and decide whether D is diagonalisable.
(iii) Let W be the complex vector space with the same basis \mathcal{E}. Is $D: W \rightarrow W$ diagonalisable?
6. (a) In each of the following cases find the Jordan normal form of the matrix A.
(i) $c_{A}(x)=x^{3}, m_{A}(x)=x$.
(ii) $c_{A}(x)=m_{A}(x)=(x-2)^{2}$.
(iii) $c_{A}(x)=(x-4)^{3}, m_{A}(x)=(x-4)^{2}$.
(iv) $c_{A}(x)=(x-1)^{10}(x-2)^{10}, m_{A}(x)=(x-1)^{5}(x-2)^{5}, \operatorname{null}(A-I)=5$, $\operatorname{rank}(A-2 I)=16$ and $\operatorname{null}\left((A-2 I)^{2}\right)=7$.
(v)

$$
A=\operatorname{diag}\left(\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right],\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]\right)
$$

(b) (i) Show that if A and B are 3×3 complex matrices with the same characteristic and minimal polynomials then they have the same Jordan normal form.
(ii) Is the same true of 4×4 complex matrices? (Give a proof or counterexample.)

