UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics M221: Algebra 3: Further Linear Algebra

COURSE CODE:MATHM221UNIT VALUE:0.50DATE:18-MAY-05TIME:14.30TIME ALLOWED:2 Hours

05-C0963-3-170 © 2005 University College London

TURN OVER

11

i

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) (i) Prove that there exist infinitely many prime numbers.
 - (ii) Show that if p_k is the k^{th} prime then $p_k < 2^{2^k}$. (You may wish to use induction on k.)
 - (b) State Fermat's Little Theorem and calculate
 - (i) $4^{44} \mod 47$,
 - (ii) $4^{29}5^{60} \mod 61$.
 - (c) If $a \ge 2$ and $p \ge 2$ are integers satisfying $a^{p-1} \equiv 1 \mod p$ calculate gcd(a, p).
- 2. (a) Let \mathbb{F} be a field. Prove that if $a, b \in \mathbb{F}[x]$ and $b \neq 0$ then there exist unique polynomials $q, r \in \mathbb{F}[x]$ such that $\deg(r) < \deg(b)$ and a = bq + r.
 - (b) (i) If $f, g \in \mathbb{F}[x]$ define gcd(f, g).
 - (ii) Find gcd(f,g) when $f(x) = x^4 1$ and $g(x) = x^2 + x 2$ belong to $\mathbb{Q}[x]$.
 - (iii) Find $h, k \in \mathbb{Q}[x]$ such that gcd(f, g) = ha + kb.
 - (c) Find the minimal polynomial of the matrix

$$A = \left[\begin{array}{rrr} 2 & 6 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right].$$

Calculate

$$B = A^{102} - 4A^{101} + 4A^{100} + A - I.$$

MATHM221

- 3. (a) Let V be a vector space over a field \mathbb{F} . Define what it means to say that $f: V \times V \to \mathbb{F}$ is a symmetric bilinear form.
 - (b) Let A be a real symmetric matrix. Prove that if A is congruent to both $B = \text{diag}(I_p, -I_q, 0)$ and $C = \text{diag}(I_j, -I_k, 0)$ then B = C.
 - (c) Find the real and complex canonical forms of the following matrices

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Hence or otherwise decide whether A and B are

- (i) congruent over \mathbb{R} ,
- (ii) congruent over \mathbb{C} .
- 4. (a) Let V be a vector space over \mathbb{C} . What does it mean to say that \langle , \rangle is an inner product on V?
 - (b) (i) Define what it means to say that $A \in M_n(\mathbb{C})$ is hermitian.
 - (ii) Prove that if $\lambda \in \mathbb{C}$ is an eigenvalue of a hermitian matrix $A \in M_n(\mathbb{C})$ then λ is real.
 - (iii) State the Spectral Theorem.
 - (iv) Let

$$A = \left[\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right].$$

Find an orthogonal matrix P such that $P^T A P = P^{-1} A P$ is diagonal.

- 5. (a) (i) State the Primary Decomposition theorem (giving definitions of the minimal polynomial and generalised eigenspaces).
 - (ii) Prove that if V is a finite dimensional vector space over a field \mathbb{F} and $\alpha: V \to V$ is a linear map then α is diagonalisable iff $m_{\alpha}(x)$ is a product of distinct linear factors.
 - (b) Let V be the real vector space of functions with basis V

$$\mathcal{E} = \{\cos x, \sin x, \cos 2x, \sin 2x\}.$$

Define $D: V \to V$ by D(f) = df/dx.

- (i) Calculate $[D]_{\mathcal{E}}$, the matrix representing D with respect to \mathcal{E} .
- (ii) Express the minimal polynomial of D as the product of monic irreducibles and decide whether D is diagonalisable.
- (iii) Let W be the complex vector space with the same basis \mathcal{E} . Is $D: W \to W$ diagonalisable?
- 6. (a) In each of the following cases find the Jordan normal form of the matrix A.

(i)
$$c_A(x) = x^3$$
, $m_A(x) = x$.

- (ii) $c_A(x) = m_A(x) = (x-2)^2$.
- (iii) $c_A(x) = (x-4)^3$, $m_A(x) = (x-4)^2$.
- (iv) $c_A(x) = (x-1)^{10}(x-2)^{10}$, $m_A(x) = (x-1)^5(x-2)^5$, $\operatorname{null}(A-I) = 5$, rank(A-2I) = 16 and $\operatorname{null}((A-2I)^2) = 7$.

(v)

$$A = \operatorname{diag} \left(\left[\begin{array}{rrrr} 1 & 2 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{array} \right], \left[\begin{array}{rrr} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{array} \right] \right).$$

- (b) (i) Show that if A and B are 3×3 complex matrices with the same characteristic and minimal polynomials then they have the same Jordan normal form.
 - (ii) Is the same true of 4×4 complex matrices? (Give a proof or counterexample.)