UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

ť

Mathematics M221: Algebra 3: Further Linear Algebra

COURSE CODE	: MATHM221
UNIT VALUE	: 0.50
DATE	: 01-MAY-03
TIME	: 10.00
TIME ALLOWED	: 2 Hours

03-C0950-3-130 © 2003 University College London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Let V be a finite dimensional vector space over \mathbb{R} and let q be a quadratic form on V.
 - (i) Explain what is meant by a canonical form of q.
 - (ii) Prove the existence and uniqueness of the canonical form of q. (You may assume the existence of an orthogonal basis with respect to q).
 - (b) Consider the following quadratic forms:

$$q_1\begin{pmatrix}x\\y\\z\end{pmatrix} = xy + 2xz + 4yz, \quad q_2\begin{pmatrix}x\\y\\z\end{pmatrix} = x^2 + 4xy + 2yz.$$

Find the real and complex canonical forms of q_1 and q_2 . Hence determine whether q_1 and q_2 are equivalent (i) over \mathbb{R} , (ii) over \mathbb{C} .

2. (a) Let V be a finite dimensional vector space with a basis $\mathcal{B} = \{b_1, \ldots, b_n\}$. Define the dual space V^* .

Define the dual basis $\mathfrak{B}^* = \{b_1^*, \ldots, b_n^*\}.$

Define the canonical map $V \to V^{**}$ and prove that this map is an isomorphism of vector spaces.

(b) For a linear map $T: V \to W$, define the *adjoint* T^* of T.

Show that $(T+U)^* = T^* + U^*$, where T and U are linear maps from V to W. Show that for $v \in V$ we have $T^{**}(v^{**}) = T(v)^{**}$, where T^{**} denotes the adjoint of T^* .

MATHM221

PLEASE TURN OVER

3. (a) Let V be a finite dimensional Euclidean space and let $T: V \to V$ be a self-adjoint linear map.

Show that for any eigenvector v of T,

$$T(\{v\}^{\perp}) \subseteq \{v\}^{\perp}.$$

Show that there is an orthonormal basis of V consisting of eigenvectors of T. (You may assume that all eigenvalues of T are real).

(b) Consider the following matrix:

$$A = \begin{pmatrix} -2 & -1 & 2\\ -1 & -2 & -2\\ 2 & -2 & 1 \end{pmatrix}$$

Find an orthogonal matrix M such that $M^{-1}AM$ is diagonal.

4. (a) Let V be an n-dimensional vector space and let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis of V.

Show that for every n-linear alternating form f on V we have

$$f(v_1,\ldots,v_n)=f(b_1,\ldots,b_n)\sum_{\sigma\in S_n}\operatorname{sign}(\sigma)\prod_{i=1}^n b^*_{\sigma(i)}(v_i).$$

(You may assume that $f(v_{\sigma(1)}, \ldots, v_{\sigma(n)}) = \operatorname{sign}(\sigma) f(v_1, \ldots, v_n)$.)

(b) Let V be an n-dimensional vector space and let f be a non-zero alternating n-linear form on V.

Show that $f(v_1, \ldots, v_n) = 0$ if and only if $\{v_1, \ldots, v_n\}$ is linearly dependent.

(c) Let $T: V \to V$ be a linear map.

Define the determinant of T in terms of alternating forms on V. Prove from the definition that $\det(T \circ U) = \det(T) \det(U)$.

MATHM221

CONTINUED

5. (a) Consider the polynomials

$$f(x) = x^4 + 1,$$
 $g(x) = x^3 + 1.$

Find polynomials $p, q \in \mathbb{Q}[x]$ such that pf + qg = 1.

Suppose $\alpha \in \mathbb{C}$ satisfies $f(\alpha) = 0$. Find rational numbers a, b, c, d such that

$$\frac{1}{\alpha^3 + 1} = a\alpha^3 + b\alpha^2 + c\alpha + d.$$

(b) Let V be a vector space over \mathbb{C} and let $T: V \to V$ be a linear map.

Define the minimal polynomial m_T of T and prove that m_T is a factor of the characteristic polynomial ch_T . (You may assume the Cayley-Hamilton Theorem).

Prove that if λ is an eigenvector of T then $m_T(\lambda) = 0$.

- 6. (a) Explain carefully what it means for a matrix to be in Jordan canonical form.
 - (b) Consider the following matrix

$$A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Find (i) the characteristic polynomial of A; (ii) the minimal polynomial of A; (iii) the Jordan canonical form of A; (iv) a Jordan basis.

- (c) Let $T : \mathbb{C}^7 \to \mathbb{C}^7$ be a linear map with characteristic polynomial $ch_T(X) = (X-1)^4 (X-3)^3$ and minimal polynomial $m_T(X) = (X-1)^2 (X-3).$
 - (i) List all possibilities for the Jordan canonical form of T.
 - (ii) Given that T id has nullity 3, identify the correct Jordan canonical form of T.

MATHM221

END OF PAPER