University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-
B.Sc. M.Sci.

Mathematics M221: Algebra 3: Further Linear Algebra

COURSE CODE : MATHM221

UNIT VALUE : 0.50

DATE : 01-MAY-03

TIME
: 10.00

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Let V be a finite dimensional vector space over \mathbb{R} and let q be a quadratic form on V.
(i) Explain what is meant by a canonical form of q.
(ii) Prove the existence and uniqueness of the canonical form of q. (You may assume the existence of an orthogonal basis with respect to q).
(b) Consider the following quadratic forms:

$$
q_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x y+2 x z+4 y z, \quad q_{2}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x^{2}+4 x y+2 y z .
$$

Find the real and complex canonical forms of q_{1} and q_{2}. Hence determine whether q_{1} and q_{2} are equivalent (i) over \mathbb{R}, (ii) over \mathbb{C}.
2. (a) Let V be a finite dimensional vector space with a basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$.

Define the dual space V^{*}.
Define the dual basis $\mathcal{B}^{*}=\left\{b_{1}^{*}, \ldots, b_{n}^{*}\right\}$.
Define the canonical map $V \rightarrow V^{* *}$ and prove that this map is an isomorphism of vector spaces.
(b) For a linear map $T: V \rightarrow W$, define the adjoint T^{*} of T.

Show that $(T+U)^{*}=T^{*}+U^{*}$, where T and U are linear maps from V to W.
Show that for $v \in V$ we have $T^{* *}\left(v^{* *}\right)=T(v)^{* *}$, where $T^{* *}$ denotes the adjoint of T^{*}.
3. (a) Let V be a finite dimensional Euclidean space and let $T: V \rightarrow V$ be a self-adjoint linear map.
Show that for any eigenvector v of T,

$$
T\left(\{v\}^{\perp}\right) \subseteq\{v\}^{\perp} .
$$

Show that there is an orthonormal basis of V consisting of eigenvectors of T. (You may assume that all eigenvalues of T are real).
(b) Consider the following matrix:

$$
A=\left(\begin{array}{ccc}
-2 & -1 & 2 \\
-1 & -2 & -2 \\
2 & -2 & 1
\end{array}\right)
$$

Find an orthogonal matrix M such that $M^{-1} A M$ is diagonal.
4. (a) Let V be an n-dimensional vector space and let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of V.
Show that for every n-linear alternating form f on V we have

$$
f\left(v_{1}, \ldots, v_{n}\right)=f\left(b_{1}, \ldots, b_{n}\right) \sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} b_{\sigma(i)}^{*}\left(v_{i}\right)
$$

(You may assume that $f\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)=\operatorname{sign}(\sigma) f\left(v_{1}, \ldots, v_{n}\right)$.)
(b) Let V be an n-dimensional vector space and let f be a non-zero alternating n-linear form on V.
Show that $f\left(v_{1}, \ldots, v_{n}\right)=0$ if and only if $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dependent.
(c) Let $T: V \rightarrow V$ be a linear map.

Define the the determinant of T in terms of alternating forms on V.
Prove from the definition that $\operatorname{det}(T \circ U)=\operatorname{det}(T) \operatorname{det}(U)$.
5. (a) Consider the polynomials

$$
f(x)=x^{4}+1, \quad g(x)=x^{3}+1
$$

Find polynomials $p, q \in \mathbb{Q}[x]$ such that $p f+q g=1$.
Suppose $\alpha \in \mathbb{C}$ satisfies $f(\alpha)=0$. Find rational numbers a, b, c, d such that

$$
\frac{1}{\alpha^{3}+1}=a \alpha^{3}+b \alpha^{2}+c \alpha+d
$$

(b) Let V be a vector space over \mathbb{C} and let $T: V \rightarrow V$ be a linear map.

Define the minimal polynomial m_{T} of T and prove that m_{T} is a factor of the characteristic polynomial $c h_{T}$. (You may assume the Cayley-Hamilton Theorem).
Prove that if λ is an eigenvector of T then $m_{T}(\lambda)=0$.
6. (a) Explain carefully what it means for a matrix to be in Jordan canonical form.
(b) Consider the following matrix

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Find (i) the characteristic polynomial of A; (ii) the minimal polynomial of A; (iii) the Jordan canonical form of A; (iv) a Jordan basis.
(c) Let $T: \mathbb{C}^{7} \rightarrow \mathbb{C}^{7}$ be a linear map with characteristic polynomial $c h_{T}(X)=(X-1)^{4}(X-3)^{3}$ and minimal polynomial $m_{T}(X)=(X-1)^{2}(X-3)$.
(i) List all possibilities for the Jordan canonical form of T.
(ii) Given that T-id has nullity 3, identify the correct Jordan canonical form of T.

