UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.SC. M.SCi.

Mathematics M221: Algebra 3: Further Linear Algebra

COURSE CODE	$:$ MATHM221
UNIT VALUE	$: \mathbf{0 . 5 0}$
DATE	$: \mathbf{1 5 - M A Y - 0 2}$
TIME	$: \mathbf{1 4 . 3 0}$
TIME ALLOWED	\ddots

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) Let q be a quadratic form on a finite dimensional vector space V over \mathbb{R}.

Define the following:
(i) the symmetric bilinear form f corresponding to q;
(ii) the matrix of f with respect to a basis \mathcal{B} of V;
(iii) the real canonical form of q.

Prove that q cannot have two different real canonical forms.
(b) Consider the following quadratic forms.

$$
q_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x^{2}+2 x y+4 x z+2 y^{2}+6 y z, \quad q_{2}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=2 x^{2}+4 x y-z^{2}
$$

Find the real and complex canonical forms of q_{1} and q_{2}.
Hence determine whether q_{1} and q_{2} are equivalent (i) over \mathbb{R} and (ii) over \mathbb{C}.
2. (a) Let V be a finite dimensional vector space over a field k and let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of V.
Define (i) the dual space V^{*} and (ii) the dual basis \mathcal{B}^{*}.
Prove that for any $\varphi \in V^{*}$,

$$
\varphi=\varphi\left(b_{1}\right) b_{1}^{*}+\ldots+\varphi\left(b_{n}\right) b_{n}^{*} .
$$

(b) Let $\mathcal{E}=\left\{e_{1}, e_{2}\right\}$ be the standard basis of \mathbb{R}^{2} and let $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ be the basis given by

$$
b_{1}=\binom{1}{1}, \quad b_{2}=\binom{3}{2} .
$$

Calculate $b_{1}^{*}\left(e_{1}\right), b_{2}^{*}\left(e_{1}\right), b_{1}^{*}\left(e_{2}\right)$ and $b_{2}^{*}\left(e_{2}\right)$.
Express b_{1}^{*} and b_{2}^{*} as linear combinations of e_{1}^{*} and e_{2}^{*}.
(6) Write down the canonical map $V \rightarrow V^{* *}$ and prove that this map is an isomorphism of vector spaces.
3. (3) Define the terms Euclidean space and orthonormal basis.
(i) Let V be a Euclidean space and let $T: V \rightarrow V$ be a self-adjoint linear map. Show that if $v \in V$ is an eigenvector of T, then $T\left(\{v\}^{\perp}\right) \subseteq\{v\}^{\perp}$.
Show that there is an orthonormal basis of V consisting of eigenvectors of T (you may assume that the eigenvectors of T are all real).
(c) Consider the matrix

$$
A=\left(\begin{array}{lll}
0 & 2 & 2 \\
2 & 3 & 4 \\
2 & 4 & 3
\end{array}\right)
$$

Given that A has characteristic polynomial $(x+1)^{2}(x-8)$, find a basis \mathcal{B} for \mathbb{R}^{3}, which is orthonormal with respect to the dot product, and whose elements are eigenvectors of A.
4. (a) Explain what is meant by an n-linear alternating form.
(b) Let f be an n-linear alternating form on an n-dimensional vector space V and let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for V.
Show that for any vectors $v_{1}, \ldots, v_{n} \in V$,

$$
f\left(v_{1}, \ldots, v_{n}\right)=f\left(b_{1}, \ldots, b_{n}\right) D_{\mathcal{B}}\left(v_{1}, \ldots, v_{n}\right)
$$

where $D_{\mathcal{B}}$ is given by

$$
D_{\mathcal{B}}\left(v_{1}, \ldots, v_{n}\right)=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} b_{\sigma(i)}^{*}\left(v_{i}\right)
$$

(c) Let $T: V \rightarrow V$ be a linear map.

Define the determinant of T in terms of alternating forms on V.
Prove from the definition, that if the matrix of T with respect to \mathcal{B} is $\left(a_{i, j}\right)$, then

$$
\operatorname{det}(T)=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{\sigma(i), i}
$$

(d) Given a permutation $\tau \in S_{n}$, define a matrix $M=\left(m_{i, j}\right)$ by

$$
m_{i, j}= \begin{cases}1 & \text { if } \tau(i)=j \\ 0 & \text { if } \tau(i) \neq j .\end{cases}
$$

Prove that $\operatorname{det} M=\operatorname{sign}(\sigma)$.
5. (a) Consider the following polynomials in $\mathbb{Q}[X]$.

$$
f(x)=x^{5}+x^{3}-x-1, \quad g(x)=x^{4}-1
$$

Using Euclid's algorithm, find the highest common factor h of f and g.
Find polynomials $a, b \in \mathbb{Q}[X]$, such that

$$
h=a f+b g .
$$

(b) Let k be a field and let $f, g, h \in k[X]$ be three polynomials. Given that f is irreducible, show that if f is a factor of $g h$, then f is a factor of g or f is a factor of h.

Suppose we have irreducible monic polynomials f_{1}, \ldots, f_{r} and g_{1}, \ldots, g_{s} satisfying

$$
f_{1} \ldots f_{r}=g_{1} \ldots g_{s}
$$

Prove that $r=s$ and that the g_{i} may be renumbered so that

$$
f_{1}=g_{1}, \quad f_{2}=g_{2}, \ldots, f_{r}=g_{r}
$$

6. (a) Let V be a finite dimensional vector space over \mathbb{C} and let $T: V \rightarrow V$ be a linear map. Suppose T has only one eigenvalue $\lambda \in \mathbb{C}$;
(i) define the generalized eigenspaces $V_{\lambda}^{(i)}$;
(ii) explain what is meant by a Jordan basis of V (with respect to T).
(b) Consider the following matrix.

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-4 & 4 & 0 \\
-6 & 3 & 2
\end{array}\right)
$$

Find:
(i) the characteristic and minimal polynomials of A;
(ii) the Jordan canonical form of A;
(iii) a Jordan basis of \mathbb{C}^{3} with respect to A.

